April  2020, 13(4): 1115-1129. doi: 10.3934/dcdss.2020066

On Lie algebra actions

Department of Mathematics and Statistics, University of Calgary, Calgary, AB, T2N 1N4, Canada

* Corresponding author: R. H. Cushman

Received  October 2017 Revised  July 2018 Published  April 2019

In this paper we define an action of a Lie algebra on a smooth manifold. We get nearly the same results as those for group actions, when the flows of the symmetry vector fields are complete. We show that the orbit space of a Lie algebra action is a differential space. We discuss differential spaces occuring in the reduction of symmetries in integrable Hamiltonian systems.

Citation: Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066
References:
[1]

N. Aronszajn, Subcartesian and subRiemannian spaces, Notices American Mathematical Society, 14 (1967), 111-111.   Google Scholar

[2]

R. Cushman and J. Śniatycki, Differential structure of orbit spaces, Canad. Math. J., 54 (2001), 715-755.  doi: 10.4153/CJM-2001-029-1.  Google Scholar

[3]

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.  Google Scholar

[4]

R. S. Palais, A Global Formulation of the Lie Theory of Transformation Groups, Memoir 22, American Mathematical Society, Providence, R.I. 1957.  Google Scholar

[5]

T. Ratiu, C. Wacheux and N. T. Zung, Convexity of singular affine structures and toric-focus integrable Hamiltonian systems, arXiv: 1706.01093v1. Google Scholar

[6] J. Śniatycki, Differential Geometry of Singular Spaces and Reduction of Symmetry, Cambridge University Press, Cambridge, UK, 2013.  doi: 10.1017/CBO9781139136990.  Google Scholar
[7]

H. Sussmann, Orbits of families of vector fields and foliations with singularities, Trans. Amer. Math. Soc., 180 (1973), 171-188.  doi: 10.1090/S0002-9947-1973-0321133-2.  Google Scholar

show all references

References:
[1]

N. Aronszajn, Subcartesian and subRiemannian spaces, Notices American Mathematical Society, 14 (1967), 111-111.   Google Scholar

[2]

R. Cushman and J. Śniatycki, Differential structure of orbit spaces, Canad. Math. J., 54 (2001), 715-755.  doi: 10.4153/CJM-2001-029-1.  Google Scholar

[3]

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.  Google Scholar

[4]

R. S. Palais, A Global Formulation of the Lie Theory of Transformation Groups, Memoir 22, American Mathematical Society, Providence, R.I. 1957.  Google Scholar

[5]

T. Ratiu, C. Wacheux and N. T. Zung, Convexity of singular affine structures and toric-focus integrable Hamiltonian systems, arXiv: 1706.01093v1. Google Scholar

[6] J. Śniatycki, Differential Geometry of Singular Spaces and Reduction of Symmetry, Cambridge University Press, Cambridge, UK, 2013.  doi: 10.1017/CBO9781139136990.  Google Scholar
[7]

H. Sussmann, Orbits of families of vector fields and foliations with singularities, Trans. Amer. Math. Soc., 180 (1973), 171-188.  doi: 10.1090/S0002-9947-1973-0321133-2.  Google Scholar

[1]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[2]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[3]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[4]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[10]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (107)
  • HTML views (553)
  • Cited by (0)

Other articles
by authors

[Back to Top]