April  2020, 13(4): 1131-1143. doi: 10.3934/dcdss.2020067

Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined

1. 

Yale-NUS College, National University of Singapore, Republic of Singapore

2. 

School of Mathematical Sciences, University of Science and Technology of China, Hefei, China

* Corresponding author: Shuqiang Zhu

Dedicated to Jürgen Scheurle on the occasion of his 65th birthday
Editors' Note: Florin Diacu passed away on February 13, 2018 before this manuscript could be published. He will be missed by his colleagues, as a mathematician and as a person.

Received  November 2017 Revised  March 2018 Published  April 2019

Fund Project: Florin Diacu is supported by Yale-NUS startup grant, and Shuqiang Zhu is supported by NSFC(No.11801537, No.11721101) and the Fundamental Research Funds for the Central Universities (No.WK0010450010).

We answer here a question posed by F. Diacu in 2012 that asked whether there exist relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ that move in a plane non-perpendicular to the rotation axis. For 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $, we find all relative equilibria that move in a plane perpendicular to the rotation axis. We also show that the set of shapes of 3-body non-geodesic ordinary central configurations on $ \mathbb S^2 $ and $ \mathbb H^2 $ is a 3-dimensional manifold. Then we conclude that almost all 3-body relative equilibria move in planes non-perpendicular to the rotation axis.

Citation: Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067
References:
[1]

F. Diacu, On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.  doi: 10.1090/S0002-9947-2010-05251-1.  Google Scholar

[2]

F. Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.  doi: 10.1090/S0002-9947-2011-05558-3.  Google Scholar

[3] F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.  doi: 10.2991/978-94-91216-68-8.  Google Scholar
[4]

F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp.  Google Scholar

[5]

F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp. doi: 10.1063/1.4967443.  Google Scholar

[6]

F. Diacu, The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.  doi: 10.4153/CJM-2016-041-2.  Google Scholar

[7]

F. Diacu and S. Kordlou, Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.  doi: 10.1016/j.jde.2013.07.009.  Google Scholar

[8]

F. DiacuR. MartínezE. Pérez-Chavela and C. Simó, On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.  doi: 10.1016/j.physd.2013.04.007.  Google Scholar

[9]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.  doi: 10.1016/j.jde.2010.08.011.  Google Scholar

[10]

F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp. doi: 10.1063/1.4900833.  Google Scholar

[11]

F. DiacuJ. M. Sánchez-Cerritos and S. Zhu, Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.  doi: 10.1007/s10884-016-9550-6.  Google Scholar

[12]

F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342. doi: 10.1007/s00332-018-9473-y.  Google Scholar

[13]

M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[14]

A. A. Kilin, Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.  doi: 10.1070/rd1999v004n01ABEH000101.  Google Scholar

[15]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.  Google Scholar

[16]

J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015. doi: 10.1007/978-3-0348-0933-7.  Google Scholar

[17]

D. G. Saari, On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.  doi: 10.1007/BF01230241.  Google Scholar

[18]

E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16.   Google Scholar

[19]

A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.   Google Scholar

[20]

A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006.  Google Scholar

[21]

S. Smale, Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.  doi: 10.1007/BF01389805.  Google Scholar

[22]

S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198.  Google Scholar

[23] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.   Google Scholar
[24]

S. Zhu, Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.  doi: 10.1090/S0002-9939-2014-11995-2.  Google Scholar

[25]

S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp. doi: 10.1063/1.4975214.  Google Scholar

[26]

S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535. Google Scholar

[27]

S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987. Google Scholar

show all references

References:
[1]

F. Diacu, On the singularities of the curved $n$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.  doi: 10.1090/S0002-9947-2010-05251-1.  Google Scholar

[2]

F. Diacu, Polygonal homographic orbits of the curved $n$-body problem, Trans. Amer. Math. Soc., 364 (2012), 2783-2802.  doi: 10.1090/S0002-9947-2011-05558-3.  Google Scholar

[3] F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Studies in Dynamical Systems, Atlantis Press, Paris, 2012.  doi: 10.2991/978-94-91216-68-8.  Google Scholar
[4]

F. Diacu, Relative equilibria in the 3-dimensional curved $n$-body problem, Mem. Amer. Math. Soc., 228 (2014), ⅵ+80 pp.  Google Scholar

[5]

F. Diacu, Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem, J. Math. Phys., 57 (2016), 112701, 20pp. doi: 10.1063/1.4967443.  Google Scholar

[6]

F. Diacu, The classical N-body problem in the context of curved space, Canad. J. Math., 69 (2017), 790-806.  doi: 10.4153/CJM-2016-041-2.  Google Scholar

[7]

F. Diacu and S. Kordlou, Rotopulsators of the curved $N$-body problem, J. Differential Equations, 255 (2013), 2709-2750.  doi: 10.1016/j.jde.2013.07.009.  Google Scholar

[8]

F. DiacuR. MartínezE. Pérez-Chavela and C. Simó, On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Phys. D, 256/257 (2013), 21-35.  doi: 10.1016/j.physd.2013.04.007.  Google Scholar

[9]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem, J. Differential Equations, 250 (2011), 340-366.  doi: 10.1016/j.jde.2010.08.011.  Google Scholar

[10]

F. Diacu and S. Popa, All the Lagrangian relative equilibria of the curved 3-body problem have equal masses, J. Math. Phys., 55 (2014), 112701, 9pp. doi: 10.1063/1.4900833.  Google Scholar

[11]

F. DiacuJ. M. Sánchez-Cerritos and S. Zhu, Stability of fixed Points and associated relative equilibria of the 3-body problem on $ {\Bbb {S}}^1 $ and $ {\Bbb {S}}^2 $, J. Dynam. Differential Equations, 30 (2018), 209-225.  doi: 10.1007/s10884-016-9550-6.  Google Scholar

[12]

F. Diacu, C. Stoica and S. Zhu, Central configurations of the curved N-body problem, J. Nonlinear Sci., 28 (2018), 1999–2046, arXiv: 1603.03342. doi: 10.1007/s00332-018-9473-y.  Google Scholar

[13]

M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976.  Google Scholar

[14]

A. A. Kilin, Libration points in spaces S2 and L2, Regul. Chaotic Dyn., 4 (1999), 91-103.  doi: 10.1070/rd1999v004n01ABEH000101.  Google Scholar

[15]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.  Google Scholar

[16]

J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics. CRM Barcelona, Lecture notes given at the Centre de Recerca Matemàtica (CRM), Barcelona, January 27–31, 2014, Edited by Montserrat Corbera, Josep Maria Cors and Enrique Ponce, Birkhäuser Springer, Basel, 2015. doi: 10.1007/978-3-0348-0933-7.  Google Scholar

[17]

D. G. Saari, On the role and the properties of n-body central configurations, Celestial Mech., 21 (1980), 9-20.  doi: 10.1007/BF01230241.  Google Scholar

[18]

E. Schrödinger, A method for determining quantum-mechanical eigenvalues and eigenfunctions, Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 46 (1940), 9-16.   Google Scholar

[19]

A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A, 39 (2006), 5787-5806.   Google Scholar

[20]

A. V. Shchepetilov, Calculus and Mechanics on Two-Point Homogeneous Riemannian Spaces, Lecture Notes in Physics, Springer, Berlin, 2006.  Google Scholar

[21]

S. Smale, Topology and mechanics. Ⅱ. The planar n-body problem, Invent. Math., 11 (1970), 45-64.  doi: 10.1007/BF01389805.  Google Scholar

[22]

S. Smale, Problems on the nature of relative equilibria in celestial mechanics, in Manifolds –Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, (1971), 194–198.  Google Scholar

[23] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, ⅴ. 5, Princeton University Press, Princeton, N. J., 1941.   Google Scholar
[24]

S. Zhu, Eulerian relative equilibria of the curved 3-body problems in S2, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.  doi: 10.1090/S0002-9939-2014-11995-2.  Google Scholar

[25]

S. Zhu and S. Zhao, Three-dimensional central configurations in $ {\Bbb {H}}^3 $ and $ {\Bbb {S}}^3 $, J. Math. Phys., 58 (2017), 022901, 7pp. doi: 10.1063/1.4975214.  Google Scholar

[26]

S. Zhu, A lower bound for the number of central configurations on $ {\mathbb {H}}^2 $, preprint, arXiv: 1702.05535. Google Scholar

[27]

S. Zhu, On Dziobek special central configurations, preprint, arXiv: 1705.03987. Google Scholar

Figure 1.  Lagrangian central configurations on $ \mathbb H^2 $
Figure 2.  An $ \mathbb S^2 $ central configuration on $ z = c $
Figure 3.  The projection of one shape
[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[12]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[13]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[15]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (127)
  • HTML views (549)
  • Cited by (0)

Other articles
by authors

[Back to Top]