April  2020, 13(4): 1229-1242. doi: 10.3934/dcdss.2020071

Predicting uncertainty in geometric fluid mechanics

1. 

CNRS - LMD - IPSL, École Normale Supérieure de Paris, 24 Rue Lhomond, 75005, Paris, France

2. 

Department of Mathematics, Imperial College, London SW7 2AZ, UK, Springfield, MO 65810, USA

* Corresponding author: Darryl D. Holm

Received  December 2017 Revised  August 2018 Published  April 2019

We review opportunities for stochastic geometric mechanics to incorporate observed data into variational principles, in order to derive data-driven nonlinear dynamical models of effects on the variability of computationally resolvable scales of fluid motion, due to unresolvable, small, rapid scales of fluid motion.

Citation: François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1229-1242. doi: 10.3934/dcdss.2020071
References:
[1]

S. Albeverio, A. B. Cruzeiro and D. D. Holm, Stochastic Geometric Mechanics, Springer, 2017.  Google Scholar

[2]

A. ArnaudonA. L. de Castro and D. D. Holm, Noise and dissipation on coadjoint orbits, J. Nonlin. Sci., 28 (2018), 91-145.  doi: 10.1007/s00332-017-9404-3.  Google Scholar

[3]

V. I. Arnol'd, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'institut Fourier, 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[4]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics, Springer-Verlag, New York  Google Scholar

[5]

J.-M. Bismut, Mécanique aléatoire, In Tenth Saint Flour Probability Summer School—1980 (Saint Flour, 1980), volume 929 of Lecture Notes in Math., pages 1–100, Springer, Berlin-New York, 1982.  Google Scholar

[6]

N. Bou-Rabee and H. Owhadi, Stochastic variational integrators, IMA J. Numer. Anal., 29 (2009), 421-443.  doi: 10.1093/imanum/drn018.  Google Scholar

[7]

C. J. Cotter, G. A. Gottwald and D. D. Holm, Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics, Proc. Roy. Soc. A, 473 (2017), 20170388, 10pp. doi: 10.1098/rspa.2017.0388.  Google Scholar

[8]

C. J. Cotter, D. Crisan, D. D. Holm, W. Pan and I. Shevchenko, Modelling uncertainty using circulation-preserving stochastic transport noise in a 2-layer quasi-geostrophic model, arXiv preprint, arXiv: 1802.05711. Google Scholar

[9]

D. Crisan, F. Flandoli and D. Holm, Solution properties of a 3d stochastic Euler fluid equation, arXiv: 1704.06989, [math-ph], 2017. doi: 10.1007/s00332-018-9506-6.  Google Scholar

[10]

A. B. CruzeiroD. D. Holm and T. S. Ratiu, Momentum maps and stochastic Clebsch action principles, Commun. in Math. Phys., 357 (2018), 873-912.  doi: 10.1007/s00220-017-3048-x.  Google Scholar

[11]

F. Gay-Balmaz and D. D. Holm, Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlin. Sci., 28 (2018), 873-904.  doi: 10.1007/s00332-017-9431-0.  Google Scholar

[12]

F. Gay-Balmaz and V. Putkaradze, On noisy extensions of nonholonomic constraints, J. Nonlin. Sci., 26 (2016), 1571-1613.  doi: 10.1007/s00332-016-9313-x.  Google Scholar

[13]

D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471 (2015), 20140963, 19 pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[14]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[15]

J. McWilliams, A note on a consistent quasigeostrophic model in a multiply connected domain, Dynam. Atmos. Ocean, 1 (1977), 427-441.  doi: 10.1016/0377-0265(77)90002-1.  Google Scholar

[16]

H. Yoshimura and F. Gay-Balmaz, Hamilton–Pontryagin principle for incompressible ideal fluids, AIP Conference Proceedings, 1376 (2011), 645-647.  doi: 10.1063/1.3652002.  Google Scholar

[17]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

show all references

References:
[1]

S. Albeverio, A. B. Cruzeiro and D. D. Holm, Stochastic Geometric Mechanics, Springer, 2017.  Google Scholar

[2]

A. ArnaudonA. L. de Castro and D. D. Holm, Noise and dissipation on coadjoint orbits, J. Nonlin. Sci., 28 (2018), 91-145.  doi: 10.1007/s00332-017-9404-3.  Google Scholar

[3]

V. I. Arnol'd, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'institut Fourier, 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[4]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics, Springer-Verlag, New York  Google Scholar

[5]

J.-M. Bismut, Mécanique aléatoire, In Tenth Saint Flour Probability Summer School—1980 (Saint Flour, 1980), volume 929 of Lecture Notes in Math., pages 1–100, Springer, Berlin-New York, 1982.  Google Scholar

[6]

N. Bou-Rabee and H. Owhadi, Stochastic variational integrators, IMA J. Numer. Anal., 29 (2009), 421-443.  doi: 10.1093/imanum/drn018.  Google Scholar

[7]

C. J. Cotter, G. A. Gottwald and D. D. Holm, Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics, Proc. Roy. Soc. A, 473 (2017), 20170388, 10pp. doi: 10.1098/rspa.2017.0388.  Google Scholar

[8]

C. J. Cotter, D. Crisan, D. D. Holm, W. Pan and I. Shevchenko, Modelling uncertainty using circulation-preserving stochastic transport noise in a 2-layer quasi-geostrophic model, arXiv preprint, arXiv: 1802.05711. Google Scholar

[9]

D. Crisan, F. Flandoli and D. Holm, Solution properties of a 3d stochastic Euler fluid equation, arXiv: 1704.06989, [math-ph], 2017. doi: 10.1007/s00332-018-9506-6.  Google Scholar

[10]

A. B. CruzeiroD. D. Holm and T. S. Ratiu, Momentum maps and stochastic Clebsch action principles, Commun. in Math. Phys., 357 (2018), 873-912.  doi: 10.1007/s00220-017-3048-x.  Google Scholar

[11]

F. Gay-Balmaz and D. D. Holm, Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlin. Sci., 28 (2018), 873-904.  doi: 10.1007/s00332-017-9431-0.  Google Scholar

[12]

F. Gay-Balmaz and V. Putkaradze, On noisy extensions of nonholonomic constraints, J. Nonlin. Sci., 26 (2016), 1571-1613.  doi: 10.1007/s00332-016-9313-x.  Google Scholar

[13]

D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 471 (2015), 20140963, 19 pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[14]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[15]

J. McWilliams, A note on a consistent quasigeostrophic model in a multiply connected domain, Dynam. Atmos. Ocean, 1 (1977), 427-441.  doi: 10.1016/0377-0265(77)90002-1.  Google Scholar

[16]

H. Yoshimura and F. Gay-Balmaz, Hamilton–Pontryagin principle for incompressible ideal fluids, AIP Conference Proceedings, 1376 (2011), 645-647.  doi: 10.1063/1.3652002.  Google Scholar

[17]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (187)
  • HTML views (594)
  • Cited by (2)

Other articles
by authors

[Back to Top]