[1]
|
A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-662-06404-7.
|
[2]
|
A. Agrachev, D. Barilari and U. Boscain, Introduction to Riemannian and sub-Riemannian geometry, 2014. Available from: https://webusers.imj-prg.fr/~davide.barilari/ABB-SRnotes-110715.pdf.
|
[3]
|
P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics: 2, Cambridge University Press, Cambridge, 1991.
|
[4]
|
A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003.
|
[5]
|
M. Born, Natural Philosophy of Cause and Chance, Dover, New York, 1964.
|
[6]
|
R. W. Brockett, Control Theory and Singular Riemannian Geometry, New Directions in Applied Mathematics (eds. P. J. Hilton and G. S. Young), Springer-Verlag, (1982), New York, 11–27.
|
[7]
|
R. W. Brockett, Nonlinear control theory and differential geometry, Proceedings of the International Congress of Mathematicians (eds. Z. Ciesielski and C. Olech), Polish Scientific Publishers, (1984), Warszawa, 1357–1368.
|
[8]
|
R. W. Brockett, Control of stochastic ensembles, The Astrom Symposium on Control(eds. B. Wittenmark and A. Rantzer), Studentlitteretur, (1999), Lund, 199–216.
|
[9]
|
R. W. Brockett, Thermodynamics with time: Exergy and passivity, Systems and Control Letters, 101 (2017), 44-49.
doi: 10.1016/j.sysconle.2016.06.009.
|
[10]
|
R. W. Brockett and J. C. Willems, Stochastic Control and the Second Law of Thermodynamics, Proceedings of the 17th IEEE Conference on Decision and Control, IEEE, (1978), New York, 1007–1011.
doi: 10.1109/CDC.1978.268083.
|
[11]
|
C. Bustamante, J. Liphardt and F. Ritort, The non-equilibrium thermodynamics of small systems, Physics Today, 58, 7, 43 (2005).
|
[12]
|
C. Carathéodory, Untersuchungen über die Grundlagen der Thermodynamik, Mathematische Annalen, 67 (1909), 355-386.
doi: 10.1007/BF01450409.
|
[13]
|
S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, N. Y. 1957.
|
[14]
|
M. Chen and C. J. Tomlin, Hamilton-Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management, Annual Review of Control, Robotics, and Autonomous Systems, 1 (2018), 333-358.
doi: 10.1146/annurev-control-060117-104941.
|
[15]
|
W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Mathematische Annalen, 117 (1939), 98-105.
doi: 10.1007/BF01450011.
|
[16]
|
M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, 1992.
|
[17]
|
M. Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian Geometry, Prog. Math.(eds, A. Bellaiche and J-J. Risler), Birkhäuser, Basel, 144 (1996), 79–323.
|
[18]
|
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Based on Structures Metriques des Varietes Riemanniennes (eds. J. LaFontaine and P. Pansu), 1981, English Translation by Sean M. Bates, Birkhäuser, Boston.
|
[19]
|
R. Hermann, Differential Geometry and the Calculus of Variations, Series: Mathematics in Science and Engineering, 49, Academic Press, New York, 1968.
|
[20]
|
C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78 (1997), 2690.
|
[21]
|
V. Jurdjevic, Geometric Control Theory, Cambridge University Press, Cambridge, UK, 1997.
|
[22]
|
D. Liberzon, Calculus of Variations and Optimal Control Theory, Princeton University Press, Princeton and Oxford, 2012.
|
[23]
|
J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr and C. Bustamante, Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality, Science, 296 (2002), 1832-1835.
doi: 10.1126/science.1071152.
|
[24]
|
I. Mitchell, The flexible, extensible and efficient toolbox of level set methods, Journal of Scientific Computing, 35 (2008), 300-329.
doi: 10.1007/s10915-007-9174-4.
|
[25]
|
R. Montgomery, Review of M. Gromov, Carnot-Carathéodory Spaces Seen from Within, Mathematical Reviews, 53C17 (53C23) featured review, 2000, MathSciNet, American Mathematical Society.
|
[26]
|
R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence, RI., 2002.
|
[27]
|
K. C. Neuman and S. M. Block, Optical trapping, Review of Scientific Instruments, 75 (2004), 2787.
doi: 10.1063/1.1785844.
|
[28]
|
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2003.
doi: 10.1007/b98879.
|
[29]
|
S. Osher, A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations, SIAM Journal of Mathematical Analysis, 24 (1993), 1145-1152.
doi: 10.1137/0524066.
|
[30]
|
B. Øksendal, Stochastic Differential Equations, Fifth edition. Universitext. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03620-4.
|
[31]
|
R. K. Pathria and P. D. Beale, Statistical Mechanics, 3$^{rd}$ edition, Elsevier, Burlington MA, 2011.
|
[32]
|
P. K. Rashevskii, About connecting two points of complete non-holonomic space by admissible curve (in Russian), Uch. Zapiski Ped. Inst. Libknexta, 2 (1938), 83-94.
|
[33]
|
D. A. Sivak and G. E. Crooks, Thermodynamic metric and optimal paths, Physical Review Letters, 108 (2012), 190602.
doi: 10.1103/PhysRevLett.108.190602.
|
[34]
|
J. C. Willems, Dissipative dynamical systems part Ⅰ: General theory, Archive for Rational Mechanics and Analysis, 45 (1972), 321-351.
doi: 10.1007/BF00276493.
|
[35]
|
P. R. Zulkowski, The Geometry of Thermodynamic Control, Ph.D thesis, University of California, Berkeley, 2014.
|
[36]
|
P. R. Zulkowski, D. A. Sivak, G. E. Crooks and M. R. DeWeese, Geometry of thermodynamic control, Physical Review E, 86 (2012), 041148.
doi: 10.1103/PhysRevE.86.041148.
|
[37]
|
R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.
|