[1]
|
E. Akin, Recurrence in Topological Dynamics. Furstenberg families and Ellis actions, The University Series in Mathematics, Plenum Press, New York, 1997.
|
[2]
|
E. Akin and E. Glasner, Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.
doi: 10.1007/BF02788112.
|
[3]
|
E. Akin and S. Kolyada, Li-Yorke sensitivity, Nonlinearity, 16 (2003), 1421-1433.
doi: 10.1088/0951-7715/16/4/313.
|
[4]
|
E. Akin and J. Rautio, Chain transitive homeomorphisms on a space: All or none, Pacific J. Math., 291 (2017), 1-49.
doi: 10.2140/pjm.2017.291.1.
|
[5]
|
J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, vol. 153, North-Holland Publishing Co., Amsterdam, 1988, Notas de Matemática [Mathematical Notes], 122.
|
[6]
|
J. Auslander, S. Kolyada and L'. Snoha, Functional envelope of a dynamical system, Nonlinearity, 20 (2007), 2245-2269.
doi: 10.1088/0951-7715/20/9/012.
|
[7]
|
J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tôhoku Math. J., (2) 32 (1980), 177-188.
doi: 10.2748/tmj/1178229634.
|
[8]
|
H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math., 60 (1967), 241-249.
doi: 10.4064/fm-60-3-241-249.
|
[9]
|
T. Das, E. Shah and L'. Snoha, (Non-)expansivity in functional envelopes, J. Math. Anal. Appl., 410 (2014), 1043-1048.
doi: 10.1016/j.jmaa.2013.08.057.
|
[10]
|
T. Dobrowolski, Examples of topological groups homeomorphic to $l_2^f$, Proc. Amer. Math. Soc., 98 (1986), 303-311.
doi: 10.2307/2045703.
|
[11]
|
Y. N. Dowker and F. G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc., (3) 4 (1954), 168-176.
|
[12]
|
T. Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, 7-37.
doi: 10.1090/conm/385/07188.
|
[13]
|
T. Downarowicz, L'. Snoha and D. Tywoniuk, Minimal spaces with cyclic group of homeomorphisms, J. Dynam. Differential Equations, 29 (2017), 243-257.
doi: 10.1007/s10884-015-9433-2.
|
[14]
|
F. T. Farrell and A. Gogolev, The space of Anosov diffeomorphisms, J. Lond. Math. Soc., (2) 89 (2014), 383-396.
doi: 10.1112/jlms/jdt073.
|
[15]
|
A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup., 13 (1980), 45-93.
doi: 10.24033/asens.1377.
|
[16]
|
B. R. Fayad, Topologically mixing and minimal but not ergodic, analytic transformation on ${{\rm{T}}^5}$, Bol. Soc. Brasil. Mat. (N.S.), 31 (2000), 277-285.
doi: 10.1007/BF01241630.
|
[17]
|
H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.
doi: 10.1007/BF01692494.
|
[18]
|
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, N.J., 1981.
|
[19]
|
H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math., 34 (1978), 61-85 (1979).
doi: 10.1007/BF02790008.
|
[20]
|
P. Gartside and A. Glyn, Autohomeomorphism groups, Topology Appl., 129 (2003), 103-110.
doi: 10.1016/S0166-8641(02)00140-2.
|
[21]
|
E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.
doi: 10.1088/0951-7715/6/6/014.
|
[22]
|
J. de Groot and R. J. Wille, Rigid continua and topological group-pictures, Arch. Math., 9 (1958), 441-446.
doi: 10.1007/BF01898628.
|
[23]
|
J. de Groot, Groups represented by homeomorphism groups, Math. Ann., 138 (1959), 80-102.
doi: 10.1007/BF01369667.
|
[24]
|
J. Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys., 70 (1979), 133-160.
doi: 10.1007/BF01982351.
|
[25]
|
S. Harada, Remarks on the topological group of measure preserving transformations, Proc. Japan Acad., 27 (1951), 523-526.
doi: 10.3792/pja/1195571228.
|
[26]
|
K. H. Hofmann and S. A. Morris, Compact homeomorphism groups are profinite, Topology Appl., 159 (2012), 2453-2462.
doi: 10.1016/j.topol.2011.09.050.
|
[27]
|
K. H. Hofmann and S. A. Morris, Representing a profinite group as the homeomorphism group of a continuum, preprint, arXiv: 1108.3876.
|
[28]
|
W. Huang, D. Khilko, S. Kolyada and G. Zhang, Dynamical compactness and sensitivity, J. Differential Equations, 260 (2016), 6800-6827.
doi: 10.1016/j.jde.2016.01.011.
|
[29]
|
W. Huang, D. Khilko, S. Kolyada, A. Peris and G. Zhang, Finite intersection property and dynamical compactness, J. Dynam. Differential Equations, 30 (2018), 1221-1245.
doi: 10.1007/s10884-017-9600-8.
|
[30]
|
W. Huang, S. Kolyada and G. Zhang, Analogues of Auslander-Yorke theorems for multi-sensitivity, Ergodic Theory Dynam. Systems, 38 (2018), 651-665.
doi: 10.1017/etds.2016.48.
|
[31]
|
M. Keane, Contractibility of the automorphism group of a nonatomic measure space, Proc. Amer. Math. Soc., 26 (1970), 420-422.
doi: 10.2307/2037351.
|
[32]
|
S. Kolyada, M. Misiurewicz and L'. Snoha, Spaces of transitive interval maps, Ergodic Theory Dynam. Systems, 35 (2015), 2151-2170.
doi: 10.1017/etds.2014.18.
|
[33]
|
S. Kolyada, M. Misiurewicz and L'. Snoha, Loops of transitive interval maps, Dynamics and numbers, Contemp. Math., Amer. Math. Soc., Providence, RI, 669 (2016), 137-154.
|
[34]
|
S. Kolyada and O. Rybak, On the Lyapunov numbers, Colloq. Math., 131 (2013), 209-218.
doi: 10.4064/cm131-2-4.
|
[35]
|
S. Kolyada and J. Semikina, On topological entropy: When positivity implies +infinity, Proc. Amer. Math. Soc., 143 (2015), 1545-1558.
|
[36]
|
S. Kolyada and L'. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., 4 (1996), 205-233.
|
[37]
|
S. Kolyada and L'. Snoha, Some aspects of topological transitivity - a survey, Iteration Theory (ECIT 94) (Opava), Grazer Math. Ber., 334 (1997), 3-35.
|
[38]
|
S. Kolyada, L'. Snoha and S. Trofimchuk, Noninvertible minimal maps, Fund. Math., 168 (2001), 141-163.
doi: 10.4064/fm168-2-5.
|
[39]
|
J. Li, Transitive points via Furstenberg family, Topology Appl., 158 (2011), 2221-2231.
doi: 10.1016/j.topol.2011.07.013.
|
[40]
|
J. Li and X. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114.
doi: 10.1007/s10114-015-4574-0.
|
[41]
|
M. Matviichuk, On the dynamics of subcontinua of a tree, J. Difference Equ. Appl., 19 (2013), 223-233.
doi: 10.1080/10236198.2011.634804.
|
[42]
|
T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115-2126.
doi: 10.1088/0951-7715/20/9/006.
|
[43]
|
N. T. Nhu, The group of measure preserving transformations of the unit interval is an absolute retract, Proc. Amer. Math. Soc., 110 (1990), 515-522.
doi: 10.1090/S0002-9939-1990-1009997-6.
|
[44]
|
K. E. Petersen, Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc., 24 (1970), 278-280.
doi: 10.1090/S0002-9939-1970-0250283-7.
|
[45]
|
P. Raith, Topological transitivity for expanding piecewise monotonic maps on the interval, Aequationes Math., 57 (1999), 303-311.
doi: 10.1007/s000100050085.
|
[46]
|
D. Ruelle, Dynamical systems with turbulent behavior, Mathematical Problems in Theoretical Physics (Proc. Internat. Conf., Univ. Rome, Rome, 1977), Lecture Notes in Phys., vol. 80, Springer, Berlin-New York, 1978,341-360.
|
[47]
|
A. N. Šarkovskiĭ, On attracting and attracted sets, Soviet Math. Dokl., 6 (1965), 268-270.
|
[48]
|
A. N. Šarkovskiĭ, Continuous mapping on the limit points of an iteration sequence, Ukrain. Mat. Ž., 18 (1966), 127-130.
|
[49]
|
A. N. Šarkovskiĭ, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-Dimensional Maps, Kiev, 1989.
|
[50]
|
P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York-Berlin, 1982.
|
[51]
|
T. Yagasaki, Weak extension theorem for measure-preserving homeomorphisms of noncompact manifolds, J. Math. Soc. Japan, 61 (2009), 687-721.
doi: 10.2969/jmsj/06130687.
|