• Previous Article
    An identification problem for a linear evolution equation in a banach space
  • DCDS-S Home
  • This Issue
  • Next Article
    Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation
doi: 10.3934/dcdss.2020076

Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization

Institute of Information Technology, Mathematics and Mechanics, Lobachevsky National Research State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia

* Corresponding author: lermanl@mm.unn.ru

To Jürgen, with the gratitude and best wishes

Received  December 2017 Revised  June 2018 Published  April 2019

We study a class of scalar differential equations on the circle $ S^1 $. This class is characterized mainly by the property that any solution of such an equation possesses an exponential dichotomy both on the semi-axes $ \mathbb R_+ $ and $ \mathbb R_+ $. Also we impose some other assumptions on the structure of the foliation into integral curves for such the equation. Differential equations of this class are called gradient-like ones. As a result, we describe the global behavior of a foliation, introduce a complete invariant of the uniform equivalency, give standard models for the equations of this distinguished class. The case of almost periodic gradient-like equations is also studied, their classification is presented.

Citation: Lev M. Lerman, Elena V. Gubina. Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020076
References:
[1]

A. A. Andronov, Systémes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251.   Google Scholar

[2]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of the negative curvature, Trudy Mat. Inst. Steklov, 90 (1967), 209 pp.  Google Scholar

[3]

S. Bochner, Sur les fonctions presque périodiques de Bohr, Comptes Rendus, 180 (1925), 1156-1158.   Google Scholar

[4]

I. U. Bronstein, Extensions of Minimal Transformation Groups, Springer Netherlands, 1979.  Google Scholar

[5]

D. Cheban, Global Attractors of Non-autonomous Dissipative Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, Singapoure, 2004. doi: 10.1142/9789812563088.  Google Scholar

[6]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, Mass., 1965.  Google Scholar

[7]

C. Corduneanu, Almost Periodic Oscillations and Waves, Springer Science+Business Media, LLC, 2009. doi: 10.1007/978-0-387-09819-7.  Google Scholar

[8]

B. P. Demidovich., Lectures on Mathematical Theory of Stability, Nauka, Moscow, 1967 (in Russian).  Google Scholar

[9]

S. V. GonchenkoL. P. Shil'nikov and D. V. Turaev, On models with non-rough Poincare homoclinic curves, Physica D, 62 (1993), 1-14.  doi: 10.1016/0167-2789(93)90268-6.  Google Scholar

[10]

S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, Homoclinic tangencies of an arbitrary order in Newhouse domains, in Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., 67 (1999), 69-128. (Russian) [Homoclinic tangencies of an arbitrary order in Newhouse domains] J. Math. Sci., 105 (2001), 1738-1778.  Google Scholar

[11]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On the existence of Newhouse regions near systems with non-rough Poincare homoclinic curve (multidimensional case), Russian Acad. Sci.: Dokl. Math., 47 (1993), 268-283.   Google Scholar

[12]

V. Z. GrinesE. Gurevich and O. Pochinka, Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersections, J. Math. Sci., 208 (2015), 81-90.  doi: 10.1007/s10958-015-2425-2.  Google Scholar

[13]

V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, "Developments in Mathematics", v.46, Springer International Publishing, 2016. doi: 10.1007/978-3-319-44847-3.  Google Scholar

[14]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York-Toronto-Sydney, 1964.  Google Scholar

[15]

J. L. Kelley, General Topology, D. Van Nostrand Co., Inc., Princeton, N.J., 1957. Google Scholar

[16]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Math. surveys and monographs, v.176, AMS, Providence, R.I., 2011. doi: 10.1090/surv/176.  Google Scholar

[17]

E. A. Leontovich-Andronova, On mathematical achievements of the Gorky school by A.A. Andronov, in Proc. of the Ⅲ All-Union Mathematical Congress, 3, USSR Acad. of Sci. P.H., Moscow, 1958. Google Scholar

[18]

E. A. Leontovich-Andronova and A. G. Maier, On a scheme determining topological structure of the orbit foliation, Doklady AN SSSR, 103 (1955), 557-560.   Google Scholar

[19]

L. Lerman, On Nonautonomous Dynamical Systems of the Morse-Smale Type, Ph.D thesis, Gorky State Univ., Gorky, 1975 (in Russian). Google Scholar

[20]

L. M. Lerman, On nonautonomous dynamical systems of the Morse-Smale type, Uspekhi Mat. Nauk, XXX (1975), p.195 (Sessions of the Moscow Math. Soc.) (in Russian). Google Scholar

[21]

L. M. Lerman and L. P. Shilnikov, On the classification of structurally stable nonautonomous systems of the second order with a finite number of cells, Soviet Math. Dokl., 14 (1973), 444–448 [transl. from Russian] Dokl. Akad. Nauk SSSR, 209 (1973), 544–547).  Google Scholar

[22]

L. M. Lerman and L. P. Shilnikov, Homoclinic structures in nonautonomous systems: Nonautonomous chaos, Chaos: Intern. J. Nonlin. Sci., 2 (1992), 447-454.  doi: 10.1063/1.165887.  Google Scholar

[23]

L. M. Lerman, Remarks on skew products over irrational rotations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3675-3689.  doi: 10.1142/S0218127405014118.  Google Scholar

[24]

B. M. Levitan, Almost Periodic Functions, GITTL, Moscow, 1953 (in Russian).  Google Scholar

[25] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge-New York, 1982.   Google Scholar
[26]

L. Markus, Asymptotically autonomous differential systems, in Contributions to the Theory of Nonlinear Oscillations Ⅲ, (S. Lefschetz, ed.), Annals of Mathematical Studies, 36, Princeton. Univ. Press, (1956), 17–29.  Google Scholar

[27]

J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Boston, MA: Academic Press, 1966.  Google Scholar

[28]

B. A. Mosovsky and J. D. Meiss, Transport in transitory dynamical systems, SIAM J. Appl. Dynam. Syst., 10 (2011), 35-65.  doi: 10.1137/100794110.  Google Scholar

[29] V. V. Nemytsky and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princetom, N.J., 1960.   Google Scholar
[30]

S. E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.  doi: 10.1016/0040-9383(74)90034-2.  Google Scholar

[31]

S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Scient., 50 (1979), 101-151.   Google Scholar

[32]

Z. Opial, Sur les équation différentielle presque-périodique sans sólution presque-périodique, Bull. L'Acad. Polon. des Sci. Ser. math., astr. et phys.: Math. Astron. Phys., 9 (1961), 673-676.   Google Scholar

[33]

M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology, 1 (1962), 101-120.  doi: 10.1016/0040-9383(65)90018-2.  Google Scholar

[34]

Ch. Potzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes in Math., 2002, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[35]

M. Rasmussen, Nonautonomous bifurcation patterns for one-dimensional differential equations, J. Diff. Equat., 234 (2007), 267-288.  doi: 10.1016/j.jde.2006.11.002.  Google Scholar

[36]

J. Scheurle, Chaotic solutions of systems with almost periodic forcing, J. Appl. Math. Phys. (ZAMP), 37 (1986), 12-26.  doi: 10.1007/BF00955515.  Google Scholar

[37]

G. Sell, Nonautonomous differential equations and topological dynamics, Ⅰ, Ⅱ, Trans. AMS, 127 (1967), 263-283.  doi: 10.2307/1994645.  Google Scholar

[38]

S. Smale, Morse inequalities for a dynamical system, Bull. AMS, 66 (1960), 43-49.  doi: 10.1090/S0002-9904-1960-10386-2.  Google Scholar

[39]

D. Stoffer, Transversal homoclinic points and hyperbolic sets for non-autonomous maps Ⅰ, Ⅱ, J. Appl. Math. Phys. (ZAMP), 39 (1988), 518-549, Ibid, 39 (1988), 783-812. doi: 10.1007/BF00948961.  Google Scholar

[40]

A. Strauss and J. A. Yorke, On asymptotically autonomous differential equations, Math. Syst. Theory, 1 (1967), 176-182.  doi: 10.1007/BF01705527.  Google Scholar

show all references

References:
[1]

A. A. Andronov, Systémes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251.   Google Scholar

[2]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds of the negative curvature, Trudy Mat. Inst. Steklov, 90 (1967), 209 pp.  Google Scholar

[3]

S. Bochner, Sur les fonctions presque périodiques de Bohr, Comptes Rendus, 180 (1925), 1156-1158.   Google Scholar

[4]

I. U. Bronstein, Extensions of Minimal Transformation Groups, Springer Netherlands, 1979.  Google Scholar

[5]

D. Cheban, Global Attractors of Non-autonomous Dissipative Dynamical Systems, World Scientific Publishing Co. Pte. Ltd, Singapoure, 2004. doi: 10.1142/9789812563088.  Google Scholar

[6]

W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, Mass., 1965.  Google Scholar

[7]

C. Corduneanu, Almost Periodic Oscillations and Waves, Springer Science+Business Media, LLC, 2009. doi: 10.1007/978-0-387-09819-7.  Google Scholar

[8]

B. P. Demidovich., Lectures on Mathematical Theory of Stability, Nauka, Moscow, 1967 (in Russian).  Google Scholar

[9]

S. V. GonchenkoL. P. Shil'nikov and D. V. Turaev, On models with non-rough Poincare homoclinic curves, Physica D, 62 (1993), 1-14.  doi: 10.1016/0167-2789(93)90268-6.  Google Scholar

[10]

S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, Homoclinic tangencies of an arbitrary order in Newhouse domains, in Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., 67 (1999), 69-128. (Russian) [Homoclinic tangencies of an arbitrary order in Newhouse domains] J. Math. Sci., 105 (2001), 1738-1778.  Google Scholar

[11]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On the existence of Newhouse regions near systems with non-rough Poincare homoclinic curve (multidimensional case), Russian Acad. Sci.: Dokl. Math., 47 (1993), 268-283.   Google Scholar

[12]

V. Z. GrinesE. Gurevich and O. Pochinka, Topological classification of Morse-Smale diffeomorphisms without heteroclinic intersections, J. Math. Sci., 208 (2015), 81-90.  doi: 10.1007/s10958-015-2425-2.  Google Scholar

[13]

V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, "Developments in Mathematics", v.46, Springer International Publishing, 2016. doi: 10.1007/978-3-319-44847-3.  Google Scholar

[14]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York-Toronto-Sydney, 1964.  Google Scholar

[15]

J. L. Kelley, General Topology, D. Van Nostrand Co., Inc., Princeton, N.J., 1957. Google Scholar

[16]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Math. surveys and monographs, v.176, AMS, Providence, R.I., 2011. doi: 10.1090/surv/176.  Google Scholar

[17]

E. A. Leontovich-Andronova, On mathematical achievements of the Gorky school by A.A. Andronov, in Proc. of the Ⅲ All-Union Mathematical Congress, 3, USSR Acad. of Sci. P.H., Moscow, 1958. Google Scholar

[18]

E. A. Leontovich-Andronova and A. G. Maier, On a scheme determining topological structure of the orbit foliation, Doklady AN SSSR, 103 (1955), 557-560.   Google Scholar

[19]

L. Lerman, On Nonautonomous Dynamical Systems of the Morse-Smale Type, Ph.D thesis, Gorky State Univ., Gorky, 1975 (in Russian). Google Scholar

[20]

L. M. Lerman, On nonautonomous dynamical systems of the Morse-Smale type, Uspekhi Mat. Nauk, XXX (1975), p.195 (Sessions of the Moscow Math. Soc.) (in Russian). Google Scholar

[21]

L. M. Lerman and L. P. Shilnikov, On the classification of structurally stable nonautonomous systems of the second order with a finite number of cells, Soviet Math. Dokl., 14 (1973), 444–448 [transl. from Russian] Dokl. Akad. Nauk SSSR, 209 (1973), 544–547).  Google Scholar

[22]

L. M. Lerman and L. P. Shilnikov, Homoclinic structures in nonautonomous systems: Nonautonomous chaos, Chaos: Intern. J. Nonlin. Sci., 2 (1992), 447-454.  doi: 10.1063/1.165887.  Google Scholar

[23]

L. M. Lerman, Remarks on skew products over irrational rotations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3675-3689.  doi: 10.1142/S0218127405014118.  Google Scholar

[24]

B. M. Levitan, Almost Periodic Functions, GITTL, Moscow, 1953 (in Russian).  Google Scholar

[25] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge-New York, 1982.   Google Scholar
[26]

L. Markus, Asymptotically autonomous differential systems, in Contributions to the Theory of Nonlinear Oscillations Ⅲ, (S. Lefschetz, ed.), Annals of Mathematical Studies, 36, Princeton. Univ. Press, (1956), 17–29.  Google Scholar

[27]

J. L. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, 21, Boston, MA: Academic Press, 1966.  Google Scholar

[28]

B. A. Mosovsky and J. D. Meiss, Transport in transitory dynamical systems, SIAM J. Appl. Dynam. Syst., 10 (2011), 35-65.  doi: 10.1137/100794110.  Google Scholar

[29] V. V. Nemytsky and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princetom, N.J., 1960.   Google Scholar
[30]

S. E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.  doi: 10.1016/0040-9383(74)90034-2.  Google Scholar

[31]

S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Scient., 50 (1979), 101-151.   Google Scholar

[32]

Z. Opial, Sur les équation différentielle presque-périodique sans sólution presque-périodique, Bull. L'Acad. Polon. des Sci. Ser. math., astr. et phys.: Math. Astron. Phys., 9 (1961), 673-676.   Google Scholar

[33]

M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology, 1 (1962), 101-120.  doi: 10.1016/0040-9383(65)90018-2.  Google Scholar

[34]

Ch. Potzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes in Math., 2002, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-14258-1.  Google Scholar

[35]

M. Rasmussen, Nonautonomous bifurcation patterns for one-dimensional differential equations, J. Diff. Equat., 234 (2007), 267-288.  doi: 10.1016/j.jde.2006.11.002.  Google Scholar

[36]

J. Scheurle, Chaotic solutions of systems with almost periodic forcing, J. Appl. Math. Phys. (ZAMP), 37 (1986), 12-26.  doi: 10.1007/BF00955515.  Google Scholar

[37]

G. Sell, Nonautonomous differential equations and topological dynamics, Ⅰ, Ⅱ, Trans. AMS, 127 (1967), 263-283.  doi: 10.2307/1994645.  Google Scholar

[38]

S. Smale, Morse inequalities for a dynamical system, Bull. AMS, 66 (1960), 43-49.  doi: 10.1090/S0002-9904-1960-10386-2.  Google Scholar

[39]

D. Stoffer, Transversal homoclinic points and hyperbolic sets for non-autonomous maps Ⅰ, Ⅱ, J. Appl. Math. Phys. (ZAMP), 39 (1988), 518-549, Ibid, 39 (1988), 783-812. doi: 10.1007/BF00948961.  Google Scholar

[40]

A. Strauss and J. A. Yorke, On asymptotically autonomous differential equations, Math. Syst. Theory, 1 (1967), 176-182.  doi: 10.1007/BF01705527.  Google Scholar

Figure 1.  Bifurcation from infinities, $ \mu = 0, $ $ \mu > 0 $
Figure 2.  Bifurcation at the violation of Assumption 3
Figure 3.  Foliation inside the rectangle
Figure 4.  Neighborhoods: crosses correspond to u-solutions, bold points correspond to s-solutions
Figure 5.  Construction of asymptotically autonomous ODE: crosses correspond to u-solutions, bold points correspond to s-solutions
[1]

Xuewei Ju, Desheng Li, Jinqiao Duan. Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1175-1197. doi: 10.3934/dcdsb.2019011

[2]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-24. doi: 10.3934/dcdss.2020092

[3]

Peter Takáč. Stabilization of positive solutions for analytic gradient-like systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 947-973. doi: 10.3934/dcds.2000.6.947

[4]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[5]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[6]

Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317

[7]

Youngna Choi. Attractors from one dimensional Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 715-730. doi: 10.3934/dcds.2004.11.715

[8]

Andrei Agrachev, Ugo Boscain, Mario Sigalotti. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 801-822. doi: 10.3934/dcds.2008.20.801

[9]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[10]

P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 423-433. doi: 10.3934/dcds.2004.10.423

[11]

Karla Díaz-Ordaz. Decay of correlations for non-Hölder observables for one-dimensional expanding Lorenz-like maps. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 159-176. doi: 10.3934/dcds.2006.15.159

[12]

Yu-Hao Liang, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a one-dimensional Dirichlet-Neumann problem with a specific cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1075-1105. doi: 10.3934/dcds.2020071

[13]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[14]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[15]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020037

[16]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[17]

François James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1355-1382. doi: 10.3934/dcds.2016.36.1355

[18]

Peter Giesl, James McMichen. Determination of the area of exponential attraction in one-dimensional finite-time systems using meshless collocation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1835-1850. doi: 10.3934/dcdsb.2018094

[19]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[20]

Siniša Slijepčević. Extended gradient systems: Dimension one. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 503-518. doi: 10.3934/dcds.2000.6.503

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (40)
  • HTML views (450)
  • Cited by (0)

Other articles
by authors

[Back to Top]