\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case

  • * Corresponding author: Dimitri Mugnai

    * Corresponding author: Dimitri Mugnai

To Angelo on the occasion of his 70th birthday, with esteem

The first author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). She is supported by the GNAMPA project 2017 Comportamento asintotico e controllo di equazioni di evoluzione non lineari and by the FFABR "Fondo per il finanziamento delle attività base di ricerca" 2017. The second author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and supported by the 2017 INdAM-GNAMPA Project Equazioni Differenziali Non Lineari. He is also supported by the Italian MIUR project Variational methods, with applications to problems in mathematical physics and geometry (2015KB9WPT_009) and by the FFABR "Fondo per il finanziamento delle attività base di ricerca" 2017

Abstract Full Text(HTML) Related Papers Cited by
  • We establish Hardy - Poincaré and Carleman estimates for non-smooth degenerate/singular parabolic operators in divergence form with Neumann boundary conditions. The degeneracy and the singularity occur both in the interior of the spatial domain. We apply these inequalities to deduce well-posedness and null controllability for the associated evolution problem.

    Mathematics Subject Classification: Primary: 35Q93; Secondary: 93B05, 34H05, 35A23.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.  doi: 10.1007/s11854-018-0030-2.
    [2] P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190. 
    [3] T. Cazenave and  A. HarauxAn Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. 
    [4] G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371.  doi: 10.1016/j.jde.2015.09.019.
    [5] G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Advances in Nonlinear Analysis, 2 (2013), 339-378.  doi: 10.1515/anona-2013-0015.
    [6] G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Memoirs Amer. Math. Soc., 242 (2016), v+84pp. doi: 10.1090/memo/1146.
    [7] G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.  doi: 10.1515/anona-2015-0163.
    [8] G. Fragnelli and D. Mugnai, Controllability of strongly degenerate parabolic problems with strongly singular potentials, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), Paper No. 50, 11 pp.
    [9] J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747.  doi: 10.1051/cocv/2011168.
    [10] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Grundlehren Math. Wiss. 181. Springer-Verlag, New York-Heidelberg, 1972.
    [11] S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.
    [12] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Second edition., Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.
    [13] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013 (75pp). doi: 10.1088/0266-5611/25/12/123013.
  • 加载中
SHARE

Article Metrics

HTML views(764) PDF downloads(254) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return