We establish Hardy - Poincaré and Carleman estimates for non-smooth degenerate/singular parabolic operators in divergence form with Neumann boundary conditions. The degeneracy and the singularity occur both in the interior of the spatial domain. We apply these inequalities to deduce well-posedness and null controllability for the associated evolution problem.
Citation: |
[1] |
I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.
doi: 10.1007/s11854-018-0030-2.![]() ![]() ![]() |
[2] |
P. Cannarsa, P. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Differential Equations, 10 (2005), 153-190.
![]() ![]() |
[3] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998.
![]() ![]() |
[4] |
G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371.
doi: 10.1016/j.jde.2015.09.019.![]() ![]() ![]() |
[5] |
G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Advances in Nonlinear Analysis, 2 (2013), 339-378.
doi: 10.1515/anona-2013-0015.![]() ![]() ![]() |
[6] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Memoirs Amer. Math. Soc., 242 (2016), v+84pp.
doi: 10.1090/memo/1146.![]() ![]() ![]() |
[7] |
G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.
doi: 10.1515/anona-2015-0163.![]() ![]() ![]() |
[8] |
G. Fragnelli and D. Mugnai, Controllability of strongly degenerate parabolic problems with strongly singular potentials, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), Paper No. 50, 11 pp.
![]() ![]() |
[9] |
J. Le Rousseau and G. Lebeau, On carleman estimates for elliptic and parabolic operators. applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., 18 (2012), 712-747.
doi: 10.1051/cocv/2011168.![]() ![]() ![]() |
[10] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. Ⅰ. Grundlehren Math. Wiss. 181. Springer-Verlag, New York-Heidelberg, 1972.
![]() ![]() |
[11] |
S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.
doi: 10.1090/S0002-9947-00-02665-9.![]() ![]() ![]() |
[12] |
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Second edition., Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.
![]() ![]() |
[13] |
M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013 (75pp).
doi: 10.1088/0266-5611/25/12/123013.![]() ![]() ![]() |