May  2020, 13(5): 1529-1541. doi: 10.3934/dcdss.2020086

Vector-valued Schrödinger operators in Lp-spaces

1. 

Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany

2. 

Dipartimento di Matematica, Università degli Studi di Salerno, via Giovanni Paolo Ⅱ, 132, 84084, Fisciano (Sa), Italy

3. 

Dipartimento di Ingegneria dell'Informazione, Ingegneria Elettrica e Matematica Applicata, Università degli Studi di Salerno, via Giovanni Paolo Ⅱ, 132, 84084, Fisciano (Sa), Italy

Received  February 2018 Revised  November 2018 Published  June 2019

Fund Project: This work has been supported by the M.I.U.R. research project Prin 2015233N54 "Deterministic and Stochastic Evolution Equations". The third author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

In this paper we consider the vector-valued operator div$ (Q\nabla u)-Vu $ of Schrödinger type. Here $ V = (v_{ij}) $ is a nonnegative, locally bounded, matrix-valued function and $ Q $ is a symmetric, strictly elliptic matrix whose entries are bounded and continuously differentiable with bounded derivatives. Concerning the potential $ V $, we assume an that it is pointwise accretive and that its entries are in $ L^\infty_{{\rm loc}}( \mathbb{R}^d) $. Under these assumptions, we prove that a realization of the vector-valued Schrödinger operator generates a $ C_0 $-semigroup of contractions in $ L^p( \mathbb{R}^d; \mathbb{C}^m) $. Further properties are also investigated.

Citation: Markus Kunze, Abdallah Maichine, Abdelaziz Rhandi. Vector-valued Schrödinger operators in Lp-spaces. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1529-1541. doi: 10.3934/dcdss.2020086
References:
[1]

D. AddonaL. AngiuliL. Lorenzi and G. Tessitore, On coupled systems of Kolmogorov equations with applications to stochastic differential games, ESAIM Control, Optim. Calc. of Var., 23 (2017), 937-976.  doi: 10.1051/cocv/2016019.  Google Scholar

[2]

S. Agmon, The $L_{p}$ approach to the Dirichlet problem. Ⅰ. Regularity theorems, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 405-448.   Google Scholar

[3]

L. AngiuliL. Lorenzi and D. Pallara, $L^p$-estimates for parabolic systems with unbounded coefficients coupled at zero and first order, J. Math. Anal. Appl., 444 (2016), 110-135.  doi: 10.1016/j.jmaa.2016.06.001.  Google Scholar

[4]

V. BetzB. D. Goddard and S. Teufel, Superadiabatic transitions in quantum molecular dynamics, Proc. R. Soc. A, 465 (2009), 3553-3580.  doi: 10.1098/rspa.2009.0337.  Google Scholar

[5]

G. M. Dall'Ara, Discreteness of the spectrum of Schrödinger operators with non-negative matrix-valued potentials, J. Funct. Anal., 268 (2015), 3649-3679.  doi: 10.1016/j.jfa.2014.10.007.  Google Scholar

[6]

S. Delmonte and L. Lorenzi, On a class of weakly coupled systems of elliptic operators with unbounded coefficients, Milan J. Math., 79 (2011), 689-727.  doi: 10.1007/s00032-011-0170-7.  Google Scholar

[7]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.  Google Scholar

[8]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces, Discr. Cont. Dyn. Syst., 18 (2007), 747-772.  doi: 10.3934/dcds.2007.18.747.  Google Scholar

[9]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin, 2001.  Google Scholar

[10]

T. Hansel and A. Rhandi, The Oseen-Navier-Stokes flow in the exterior of a rotating obstacle: The non-autonomous case, J. Rein. Angew. Math., 694 (2014), 1-26.  doi: 10.1515/crelle-2012-0113.  Google Scholar

[11]

F. Haslinger and B. Helffer, Compactness of the solution operator to $\overline{\partial}$ in weighted $L^2$-spaces, J. Funct. Anal., 243 (2007), 679-697.  doi: 10.1016/j.jfa.2006.09.004.  Google Scholar

[12]

M. HieberL. LorenziJ. Prüss and A. Rhandi, Global properties of generalized Ornstein-Uhlenbeck operators on $L^p(\mathbb{R}^N, \mathbb{R}^N)$ with more than linearly growing coefficients, J. Math. Anal. Appl., 350 (2009), 100-121.  doi: 10.1016/j.jmaa.2008.09.011.  Google Scholar

[13]

M. HieberA. Rhandi and O. Sawada, The Navier-Stokes flow for globally Lipschitz continuous initial data, Kyoto Conference on the Navier-Stokes Equations and their Applications, Res. Inst. Math. Sci. (RIMS) Kkyroku Bessatsu, B1 (2007), 159-165.   Google Scholar

[14]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbb{R}^n$ with linearly growing initial data, Arch. Ration. Mech. Anal., 175 (2005), 269-285.  doi: 10.1007/s00205-004-0347-0.  Google Scholar

[15]

T. Kato, On some Schrödinger operators with a singular complex potential, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 105-114.   Google Scholar

[16]

M. Kunze, L. Lorenzi, A. Maichine and A. Rhandi, $L^p$-theory for Schrödinger systems, to appear in Math. Nachr, doi: 10.1002/mana.201800206, 2019. doi: 10.1002/mana.201800206.  Google Scholar

[17]

L. Lorenzi, Analytical Methods for Kolmogorov Equations, Second edition, Monograph and research notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2017.  Google Scholar

[18]

L. Lorenzi and A. Rhandi, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ., 15 (2015), 53-88.  doi: 10.1007/s00028-014-0249-z.  Google Scholar

[19]

A. Maichine and A. Rhandi, On a polynomial scalar perturbation of a Schrödinger system in $L^p$-spaces, J. Math. Anal. Appl., 466 (2018), 655-675.  doi: 10.1016/j.jmaa.2018.06.014.  Google Scholar

[20]

J. PrüssA. Rhandi and R. Schnaubelt, The domain of elliptic operators on $L^p(\mathbb{R}^d)$ with unbounded drift coefficients, Houston J. Math., 32 (2006), 563-576.   Google Scholar

[21]

K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1980.  Google Scholar

show all references

References:
[1]

D. AddonaL. AngiuliL. Lorenzi and G. Tessitore, On coupled systems of Kolmogorov equations with applications to stochastic differential games, ESAIM Control, Optim. Calc. of Var., 23 (2017), 937-976.  doi: 10.1051/cocv/2016019.  Google Scholar

[2]

S. Agmon, The $L_{p}$ approach to the Dirichlet problem. Ⅰ. Regularity theorems, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 405-448.   Google Scholar

[3]

L. AngiuliL. Lorenzi and D. Pallara, $L^p$-estimates for parabolic systems with unbounded coefficients coupled at zero and first order, J. Math. Anal. Appl., 444 (2016), 110-135.  doi: 10.1016/j.jmaa.2016.06.001.  Google Scholar

[4]

V. BetzB. D. Goddard and S. Teufel, Superadiabatic transitions in quantum molecular dynamics, Proc. R. Soc. A, 465 (2009), 3553-3580.  doi: 10.1098/rspa.2009.0337.  Google Scholar

[5]

G. M. Dall'Ara, Discreteness of the spectrum of Schrödinger operators with non-negative matrix-valued potentials, J. Funct. Anal., 268 (2015), 3649-3679.  doi: 10.1016/j.jfa.2014.10.007.  Google Scholar

[6]

S. Delmonte and L. Lorenzi, On a class of weakly coupled systems of elliptic operators with unbounded coefficients, Milan J. Math., 79 (2011), 689-727.  doi: 10.1007/s00032-011-0170-7.  Google Scholar

[7]

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.  Google Scholar

[8]

S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces, Discr. Cont. Dyn. Syst., 18 (2007), 747-772.  doi: 10.3934/dcds.2007.18.747.  Google Scholar

[9]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Berlin, 2001.  Google Scholar

[10]

T. Hansel and A. Rhandi, The Oseen-Navier-Stokes flow in the exterior of a rotating obstacle: The non-autonomous case, J. Rein. Angew. Math., 694 (2014), 1-26.  doi: 10.1515/crelle-2012-0113.  Google Scholar

[11]

F. Haslinger and B. Helffer, Compactness of the solution operator to $\overline{\partial}$ in weighted $L^2$-spaces, J. Funct. Anal., 243 (2007), 679-697.  doi: 10.1016/j.jfa.2006.09.004.  Google Scholar

[12]

M. HieberL. LorenziJ. Prüss and A. Rhandi, Global properties of generalized Ornstein-Uhlenbeck operators on $L^p(\mathbb{R}^N, \mathbb{R}^N)$ with more than linearly growing coefficients, J. Math. Anal. Appl., 350 (2009), 100-121.  doi: 10.1016/j.jmaa.2008.09.011.  Google Scholar

[13]

M. HieberA. Rhandi and O. Sawada, The Navier-Stokes flow for globally Lipschitz continuous initial data, Kyoto Conference on the Navier-Stokes Equations and their Applications, Res. Inst. Math. Sci. (RIMS) Kkyroku Bessatsu, B1 (2007), 159-165.   Google Scholar

[14]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbb{R}^n$ with linearly growing initial data, Arch. Ration. Mech. Anal., 175 (2005), 269-285.  doi: 10.1007/s00205-004-0347-0.  Google Scholar

[15]

T. Kato, On some Schrödinger operators with a singular complex potential, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 105-114.   Google Scholar

[16]

M. Kunze, L. Lorenzi, A. Maichine and A. Rhandi, $L^p$-theory for Schrödinger systems, to appear in Math. Nachr, doi: 10.1002/mana.201800206, 2019. doi: 10.1002/mana.201800206.  Google Scholar

[17]

L. Lorenzi, Analytical Methods for Kolmogorov Equations, Second edition, Monograph and research notes in Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2017.  Google Scholar

[18]

L. Lorenzi and A. Rhandi, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ., 15 (2015), 53-88.  doi: 10.1007/s00028-014-0249-z.  Google Scholar

[19]

A. Maichine and A. Rhandi, On a polynomial scalar perturbation of a Schrödinger system in $L^p$-spaces, J. Math. Anal. Appl., 466 (2018), 655-675.  doi: 10.1016/j.jmaa.2018.06.014.  Google Scholar

[20]

J. PrüssA. Rhandi and R. Schnaubelt, The domain of elliptic operators on $L^p(\mathbb{R}^d)$ with unbounded drift coefficients, Houston J. Math., 32 (2006), 563-576.   Google Scholar

[21]

K. Yosida, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1980.  Google Scholar

[1]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[2]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[3]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[5]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[6]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[7]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[8]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[13]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[14]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[17]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[18]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[19]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[20]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (250)
  • HTML views (410)
  • Cited by (0)

[Back to Top]