May  2020, 13(5): 1543-1551. doi: 10.3934/dcdss.2020087

Mean periodic solutions of a inhomogeneous heat equation with random coefficients

1. 

Voronezh State University, Universitetskaya pl., 1, Voronezh, 394018, Russia

2. 

Institute of Law and Economics, Leninskii pr., 119-A, Voronezh, 394042, Russia

3. 

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Vavilova ul., 44/2, Moscow, 119333, Russia

* Corresponding author

Received  February 2018 Revised  September 2018 Published  June 2019

Fund Project: The first author is supported by the Russian Science Foundation project No. 17-11-01220

We present conditions ensuring the periodicity of the mathematical expectation of a solution of a scalar linear inhomogeneous heat equation with random coefficients where the coefficient in front of the unknown functions is Gaussian or it is uniformly distributed. The obtained results may be treated as finding a control ensuring the periodicity of the mathematical expectation of a solution of the heat equation.

Citation: Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1543-1551. doi: 10.3934/dcdss.2020087
References:
[1]

H. Amann, Periodic solutions for semi-linear parabolic equations, in Nonlinear Analysis: A Collection of Papers in Honor of Erich Rothe, Academic Press, (1978), 1–29.  Google Scholar

[2]

N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations, Proc. Amer. Math. Soc., 106 (1989), 107-114.  doi: 10.1090/S0002-9939-1989-0953007-5.  Google Scholar

[3]

R. Z. Khasminskii, Ustoychivost' Sistem Differencial'nyh Uravnenii pri Sluchainykh Vozmushcheniyakh ikh Parametrov, (Russian) [Stability of Systems of Differential Equations under Random Perturbations of Their Parameters], Nauka, Moscow, 1969.  Google Scholar

[4]

Yu. S. Kolesov, O nekotorykh priznakakh sushchestvovaniya ustoichivykh periodicheskikh reshenii u kvasilineinykh parabolicheskikh uravnenii, (Russian) [Some of the signs of existence of stable periodic solutions for quasilinear parabolic equations], Dokl. AN SSSR, 157 (1964), 1288-1290.   Google Scholar

[5]

I. I. Shmulev, Periodicheskie resheniya pervoi kraevoi zadachi dlya parabolicheskikh uravnenii, (Russian) [Periodic solutions of the first boundary problem for pabolic equations], Matem. sb., 66 (1965), 398-410.   Google Scholar

[6]

A. N. Tikhonov and A. A. Samarskii, Uravneniya Matematičesko$\check{i}$ Fiziki, (Russian) [Equations of Mathematical Physics], Nauka, Moscow, 1953.  Google Scholar

[7]

V. A. Yakubovich and V. M. Starzhinskii, Lineinye Differencial'nye Uravneniya s Periodicheskimi Koefficientami i ikh Prilozheniya, (Russian) [Linear Differential Equations with Periodic Coefficients and Their Applications], Nauka, Moscow, 1972. Google Scholar

[8]

V. G. Zadorozhniy, Metody Variatsionnogo Analiza, (Russian) [Methods of Variational Analysis], NIC "Regulyarnaya i Khaoticheskaya Dinamika", Institut Kompyuternyh Issledovanii, Moscow-Izhevsk, 2006. Google Scholar

[9]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo differencial'nogo uravneniya pervogo poryadka, (Russian) [Mean-periodic solutions of a first-order linear differential equation], Dokl. Akad. Nauk, 450 (2013), 505-510 (Engl. transl.: Dokl. Math., 87 (2013), 325-330.) doi: 10.1134/s1064562413030277.  Google Scholar

[10]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo neodnorodnogo differencial'nogo uravneniya pervogo poryadka so sluchainymi koefficientami, (Russian) [Mean periodic solutions of a linear inhomogeneous first-order differential equation with random coefficients], Differentcial'nye Uravneniya, 50 (2014), 726-744 (English transl.: Differential Equations, 50 (2014), 722-741. Google Scholar

show all references

References:
[1]

H. Amann, Periodic solutions for semi-linear parabolic equations, in Nonlinear Analysis: A Collection of Papers in Honor of Erich Rothe, Academic Press, (1978), 1–29.  Google Scholar

[2]

N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations, Proc. Amer. Math. Soc., 106 (1989), 107-114.  doi: 10.1090/S0002-9939-1989-0953007-5.  Google Scholar

[3]

R. Z. Khasminskii, Ustoychivost' Sistem Differencial'nyh Uravnenii pri Sluchainykh Vozmushcheniyakh ikh Parametrov, (Russian) [Stability of Systems of Differential Equations under Random Perturbations of Their Parameters], Nauka, Moscow, 1969.  Google Scholar

[4]

Yu. S. Kolesov, O nekotorykh priznakakh sushchestvovaniya ustoichivykh periodicheskikh reshenii u kvasilineinykh parabolicheskikh uravnenii, (Russian) [Some of the signs of existence of stable periodic solutions for quasilinear parabolic equations], Dokl. AN SSSR, 157 (1964), 1288-1290.   Google Scholar

[5]

I. I. Shmulev, Periodicheskie resheniya pervoi kraevoi zadachi dlya parabolicheskikh uravnenii, (Russian) [Periodic solutions of the first boundary problem for pabolic equations], Matem. sb., 66 (1965), 398-410.   Google Scholar

[6]

A. N. Tikhonov and A. A. Samarskii, Uravneniya Matematičesko$\check{i}$ Fiziki, (Russian) [Equations of Mathematical Physics], Nauka, Moscow, 1953.  Google Scholar

[7]

V. A. Yakubovich and V. M. Starzhinskii, Lineinye Differencial'nye Uravneniya s Periodicheskimi Koefficientami i ikh Prilozheniya, (Russian) [Linear Differential Equations with Periodic Coefficients and Their Applications], Nauka, Moscow, 1972. Google Scholar

[8]

V. G. Zadorozhniy, Metody Variatsionnogo Analiza, (Russian) [Methods of Variational Analysis], NIC "Regulyarnaya i Khaoticheskaya Dinamika", Institut Kompyuternyh Issledovanii, Moscow-Izhevsk, 2006. Google Scholar

[9]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo differencial'nogo uravneniya pervogo poryadka, (Russian) [Mean-periodic solutions of a first-order linear differential equation], Dokl. Akad. Nauk, 450 (2013), 505-510 (Engl. transl.: Dokl. Math., 87 (2013), 325-330.) doi: 10.1134/s1064562413030277.  Google Scholar

[10]

V. G. Zadorozhniy and G. A. Kurina, Periodicheskie v srednem resheniya lineinogo neodnorodnogo differencial'nogo uravneniya pervogo poryadka so sluchainymi koefficientami, (Russian) [Mean periodic solutions of a linear inhomogeneous first-order differential equation with random coefficients], Differentcial'nye Uravneniya, 50 (2014), 726-744 (English transl.: Differential Equations, 50 (2014), 722-741. Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[3]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[4]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[5]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[6]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[7]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[8]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (97)
  • HTML views (450)
  • Cited by (0)

Other articles
by authors

[Back to Top]