[1]
|
E. B. M. Bashier and K. C. Patidar, Optimal control of an epidemiological model with multiple time delays, Applied Mathematics and Computation, 292 (2017), 47-56.
doi: 10.1016/j.amc.2016.07.009.
|
[2]
|
J. T. Betts, S. L. Campbell and K. C. Thompson, Optimal control software for constrained nonlinear systems with delays. in Proceedings, IEEE Multi Conference on Systems and Control, (2011), 444-449.
doi: 10.1109/CACSD.2011.6044560.
|
[3]
|
Q. Q. Chai and W. Wang, A computational method for free terminal time optimal control problem governed by nonlinear time delayed systems, Applied Mathematical Modelling, 53 (2018), 242-250.
doi: 10.1016/j.apm.2017.08.023.
|
[4]
|
M. Dadkhah, M. H. Farahi and A. Heydari, Optimal control of a class of non-linear time-delay systems via hybrid functions, IMA Journal of Mathematical Control and Information, 34 (2017), 255-270.
doi: 10.1093/imamci/dnv044.
|
[5]
|
R. Dehghan and M. Keyanpour, A numerical approximation for delay fractional optimal control problems based on the method of moments, IMA Journal of Mathematical Control and Information, 34 (2017), 77-92.
doi: 10.1093/imamci/dnv032.
|
[6]
|
L. Denis-Vidal, C. Jauberthie and G. Joly-Blanchard, Identifiability of a nonlinear delayed-differential aerospace model, IEEE Trains. Autom. Control, 51 (2006), 154-158.
doi: 10.1109/TAC.2005.861700.
|
[7]
|
L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays, Journal of Industrial and Management Optimization, 10 (2014), 413-441.
doi: 10.3934/jimo.2014.10.413.
|
[8]
|
Z. Gong, C. Liu and Y. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.
doi: 10.3934/jimo.2017042.
|
[9]
|
A. Jajarmi and M. Hajipour, An Efficient finite differencr method for the time-delay optimal control problems with time-varying delay, Asian Journal of Control, 19 (2017), 554-563.
doi: 10.1002/asjc.1371.
|
[10]
|
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parametrization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6 (1997), 243-261.
|
[11]
|
H. W. J. Lee, K. L. Teo, V. Rehbock and L. S. Jennings, Control parameterization enhancing technique for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.
doi: 10.1016/S0005-1098(99)00050-3.
|
[12]
|
J. Lei, Optimal vibration control of nonlinear systems with multiple time-delays: An application to vehicle suspension, Integrated Ferroelectrics, 170 (2016), 10-32.
doi: 10.1080/10584587.2016.1165574.
|
[13]
|
G. N. Li, H. L. Xu and Y. Lin, Applicationof bat algorithm based time optimal control in multi-robots formation reconfiguration, Journal of Bionic Engneering, 15 (2018), 126-138.
doi: 10.1007/s42235-017-0010-8.
|
[14]
|
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survery, Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275.
|
[15]
|
C. Liu, Z. Gong and K. L. Teo, Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data, Applied Mathematical Modelling, 53 (2018), 353-368.
doi: 10.1016/j.apm.2017.09.007.
|
[16]
|
C. Liu, R. Loxton and K. L. Teo, A computational method for solving time-delay optimal control problems with free terminal time, Systems & Control Letters, 72 (2014), 53-60.
doi: 10.1016/j.sysconle.2014.07.001.
|
[17]
|
C. Y. Liu, R. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Journal of Optimization Theory and Applications, 163 (2014), 957-988.
doi: 10.1007/s10957-014-0533-7.
|
[18]
|
P. Liu, G. D. Li, X. G. Liu, L. Xiao, Y. L. Wang, C. H. Yang and W. H. Gui, A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems, ISA transactions, 73 (2018), 66-78.
doi: 10.1016/j.isatra.2017.12.008.
|
[19]
|
G. R. Marzban and S. M. Hoseini, An efficient discretization scheme for solving nonlinear optimal control problems with multiple time delays, Optimal Control Applications and Methods, 37 (2016), 682-707.
doi: 10.1002/oca.2187.
|
[20]
|
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex, 1991.
|
[21]
|
C. Z. Wu and K. L. Teo, Optimal impulsive control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450.
doi: 10.3934/jimo.2006.2.435.
|
[22]
|
C. Z. Wu, K. L. Teo, R. Li and Y. Zhao, Optimal control of switched systems with time delay, Applied Mathematics Letters, 19 (2006), 1062-1067.
|
[23]
|
Y. Wu, Z. Yuan and Y. Wu, Optimal tracking control for networked control systems with random time delays and packet dropouts, Journal of Industrial and Management Optimization, 11 (2015), 1343-1354.
doi: 10.3934/jimo.2015.11.1343.
|
[24]
|
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings, VISUAL MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781.
|
[25]
|
C. Yu, B. Li, R. Loxton and K. L. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.
doi: 10.1007/s10898-012-9858-7.
|
[26]
|
C. Yu, Q. Lin, R. Loxton, K. L. Teo and G. Wang, A hybrid time-scaling transformation for time-delay optimal control problems, Journal of Optimization Theory and Application, 169 (2016), 876-901.
doi: 10.1007/s10957-015-0783-z.
|