\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal control of hybrid manufacturing systems by log-exponential smoothing aggregation

  • * Corresponding author: Jianxing Li and Honglei Xu

    * Corresponding author: Jianxing Li and Honglei Xu 
Abstract Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • This paper studies new optimal control policies for solving complex decision-making problems encountered in industrial hybrid systems in a manufacturing setting where critical jobs exist in a busy structure. In such setting, different dynamical systems interlink each other and share common functions for smooth task execution. Entities arriving at shared resources compete for service. The interactions of industrial hybrid systems become more and more complex and need a suitable controller to achieve the best performance and to obtain the best possible service for each of the entities arriving at the system. To solve these challenges, we propose an optimal control policy to minimize the operational cost for the manufacturing system. Furthermore, we develop a hybrid model and a new smoothing algorithm for the cost balancing between the quality and the job tardiness by finding optimal service time of each job in the system.

    Mathematics Subject Classification: Primary: 37C75, 93C10; Secondary: 34D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Job arrival $ 0.4\le r_i \le 1.5 $

    $ F_1 \, | \, \text{no-wait, seq-dependent}\, | \, x_{\max} $ $ F_1 \, | \, \text{wait, seq-dependent}\, | \, x_{\max} $
    Job Arrival time Control input Completion time Processing cost Control input Completion time Processing cost
    0.4 0.3162 0.5000 2.4500 0.4404 0.5940 1.4872
    0.5 0.4472 0.7000 1.5900 0.4404 0.7950 1.7664
    0.7 0.4472 0.9000 1.9100 0.4404 0.9959 2.1262
    0.9 0.5300 1.1809 2.1777 0.5132 1.2593 2.4211
    1.3 0.4472 1.5000 3.3500 0.447214 1.5000 3.3500
    1.5 0.4423 1.6956 3.9998 0.4423 1.6956 3.9998
    Total cost: 15.4775 Total cost: 15.1507
     | Show Table
    DownLoad: CSV

    Table 2.  Job arrival $ 1.1\le r_i \le 2.3 $

    $ F_1 \, | \, \text{no-wait, seq-dependent}\, | \, x_{\max} $ $ F_1 \, | \, \text{wait, seq-dependent}\, | \, x_{\max} $
    Job Arrival time Control input Completion time Processing cost Control input Completion time Processing cost
    1.1 0.4963 1.3463 2.7057 0.4963 1.3463 2.7057
    1.4 0.4472 1.6000 3.6600 0.4472 1.6000 3.6600
    1.6 0.3162 1.7000 5.0900 0.4310 1.7857 4.3733
    1.7 0.4204 1.8767 4.7668 0.4121 1.9530 5.1098
    2.2 0.3162 2.3000 7.4900 0.3652 2.3393 7.2480
    2.3 0.3690 2.4361 7.5503 0.3633 2.4713 7.9814
    Total cost: 31.2628 Total cost: 31.0782
     | Show Table
    DownLoad: CSV
  • [1] M. Baker and J. Wurgler, Market timing and capital structure, The Journal of Finance, 57 (2002), 1-32. 
    [2] P. I. BartonC. K. Lee and M. Yunt, Optimization of hybrid systems, Computers and Chemical Engineering, 30 (2006), 1576-1589.  doi: 10.1016/j.compchemeng.2006.05.024.
    [3] X. CaiM. LaiX. LiY. Li and X. Wu, Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels, European Journal of Operational Research, 233 (2014), 374-382.  doi: 10.1016/j.ejor.2013.07.017.
    [4] C. G. CassandrasQ. LiuK. Gokbayrak and D. L. Pepyne, Optimal control of a two-stage hybrid manufacturing system model, Decision and Control, Proceedings of the 38th IEEE Conference on, 1 (1999), 450-455. 
    [5] Y. C. ChoC. G. Cassandras and D. L. Pepyne, Forward algorithms for optimal control of a class of hybrid systems, Decision and Control, 2000. Proceedings of the 39th IEEE Conference on, 1 (2000), 975-980.  doi: 10.1109/CDC.2000.912900.
    [6] A. K. DhaibanM. A. Baten and N. Aziz, An optimal inventory control in hybrid manufacturing/remanufacturing system with deteriorating and defective items, International Journal of Mathematics in Operational Research, 12 (2018), 66-90.  doi: 10.1504/IJMOR.2018.088575.
    [7] M. R. GareyD. S. Johnson and R. Sethi, The complexity of flowshop and job-shop scheduling, Mathematics of Operations Research, 1 (1976), 117-129.  doi: 10.1287/moor.1.2.117.
    [8] M. Gazarik and Y. Wardi, Optimal release times in a single server: An optimal control perspective, IEEE Trans. Automat. Control, 43 (1998), 998-1002.  doi: 10.1109/9.701110.
    [9] S. KowalewskiO. StursbergM. FritzH. GrafI. HoffmannJ. PreubigM. RemelheS. Simon and H. Treseler, A case study in tool-aided analysis of discretely controlled continuous systems: The two tanks problem, Hybrid Systems V, 1567 (1997), 163-185.  doi: 10.1007/3-540-49163-5_9.
    [10] B. LiuJ. H. David and Z. Sun, Input-to-state-$KL$-stability and criteria for a class of hybrid dynamical systems, Applied Mathematics and Computation, 326 (2018), 124-140.  doi: 10.1016/j.amc.2018.01.002.
    [11] M. LiuX. YangJ. Zhang and C. Chu, Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model, International Journal of Production Research, 55 (2017), 6084-6107.  doi: 10.1080/00207543.2017.1324222.
    [12] D. MourtzisM. Doukas and D. Bernidaki, Simulation in manufacturing: Review and challenges, Procedia CIRP, 25 (2014), 213-229.  doi: 10.1016/j.procir.2014.10.032.
    [13] J.S. PanL. KongP.W. Tsai and V. Snasel, $\alpha$-fraction first strategy for hierarchical wireless sensor networks, Journal of Internet Technology, 19 (2018), 1717-1726. 
    [14] D. L. Pepyne and C. G. Cassandras, Modeling, analysis, and optimal control of a class of hybrid systems, Discrete Event Dynamic Systems, 8 (1998), 175-201.  doi: 10.1023/A:1008237701804.
    [15] D. L. Pepyne and C. G. Cassandras, Optimal control of hybrid systems in manufacturing, Proceedings of the IEEE, 88 (2000), 1108-1123.  doi: 10.1109/5.871312.
    [16] A. J. Van Der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer London, 2000. doi: 10.1007/BFb0109998.
    [17] J. WangJ. Zhao and X. Wang, Optimum policy in hybrid manufacturing/remanufacturing system, Computers and Industrial Engineering, 60 (2011), 411-419.  doi: 10.1016/j.cie.2010.05.002.
    [18] W. Xia and Z. Wu, An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problem, Computers and Industrial Engineering, 48 (2005), 409-425.  doi: 10.1016/j.cie.2005.01.018.
    [19] X. XieH. XuX. Cheng and Y. Yu, Improved results on exponential stability of discrete-time switched delay systems, Discrete & Continuous Dynamical Systems-Series B, 22 (2017), 199-208.  doi: 10.3934/dcdsb.2017010.
    [20] J. Ye, H. Xu, E. Feng and Z. Xiu, et al., Optimization of a fed-batch bioreactor for 1, 3-propanediol production using hybrid nonlinear optimal control, Journal of Process Control, 24 (2014), 1556–1569.
    [21] Y. ZhangM. WangH. Xu and K. L. Teo, Global stabilization of switched control systems with time delay, Nonlinear Analysis: Hybrid Systems, 14 (2014), 86-98.  doi: 10.1016/j.nahs.2014.05.004.
    [22] G. ZhouK. C. Toh and J. Sun, Efficient algorithms for the smallest enclosing ball problem, Computational Optimization and Applications, 30 (2005), 147-160.  doi: 10.1007/s10589-005-4565-7.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(662) PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return