[1]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[2]
|
J. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20 (2010), 1956-1982.
doi: 10.1137/080738970.
|
[3]
|
E. J. Candès and Y. Plan, Matrix completion with noise, Proceedings of the IEEE, 98 (2010), 925-936.
|
[4]
|
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), 717-772.
doi: 10.1007/s10208-009-9045-5.
|
[5]
|
E. J. Candès and J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions, Found. Comput. Math., 6 (2006), 227-254.
doi: 10.1007/s10208-004-0162-x.
|
[6]
|
E. J. Candès, T. Romberg and J. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), 489-509.
doi: 10.1109/TIT.2005.862083.
|
[7]
|
E. J. Candès and T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies?, IEEE Trans. Inform. Theory, 52 (2006), 5406-5425.
doi: 10.1109/TIT.2006.885507.
|
[8]
|
E. J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Trans. Inform. Theory, 56 (2010), 2053-2080.
doi: 10.1109/TIT.2010.2044061.
|
[9]
|
R. Chartrand, Nonconvex splitting for regularized low-rank + sparse decomposition, IEEE Trans. Signal Process., 60 (2012), 5810-5819.
doi: 10.1109/TSP.2012.2208955.
|
[10]
|
C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of admm for multi-block convex minimization problems is not necessarily convergent, Math. Program., 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[11]
|
W. Dai and O. Milenkovic, Set: an algorithm for consistent matrix completion, CoRR, abs/0909.2705 (2009).
|
[12]
|
D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582.
|
[13]
|
M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Trans. Inform. Theory, 52 (2006), 5559-5569.
doi: 10.1109/TIT.2006.885522.
|
[14]
|
L. Eldén, Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of Algorithms), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007.
doi: 10.1137/1.9780898718867.
|
[15]
|
D. Goldfarb, S. Ma and Z. Wen, Solving low-rank matrix completion problems efficiently, in Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing, Allerton'09, 2009, 1013–1020.
|
[16]
|
D. Gross, Recovering Low-Rank Matrices from Few Coefficients in Any Basis, tech. rep., Leibniz University, 2009.
|
[17]
|
D. Han and X. Yuan, A note on the alternating direction method of multipliers, J. Optim. Theory Appl., 155 (2012), 227-238.
doi: 10.1007/s10957-012-0003-z.
|
[18]
|
M. Hong and Z.-Q. Luo, On the linear convergence of the alternating direction method of multipliers, preprint, http://arXiv.org/abs/1208.3922, 2012.
doi: 10.1007/s10107-016-1034-2.
|
[19]
|
M. Hong, Z.-Q. Luo and M. Razaviyayn, Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems, SIAM J. Optim., 26 (2016), 337–364, http://arXiv.org/abs/1410.1390.
doi: 10.1137/140990309.
|
[20]
|
R. H. Keshavan, A. Montanari and S. Oh, Matrix completion from a few entries, IEEE Trans. Inform. Theory, 56 (2010), 2980-2998.
doi: 10.1109/TIT.2010.2046205.
|
[21]
|
R. H. Keshavan, A. Montanari and S. Oh, Matrix completion from noisy entries, J. Mach. Learn. Res., 11 (2010), 2057-2078.
|
[22]
|
R. H. Keshavan and S. Oh, A Gradient Descent Algorithm on the Grassman Manifold for Matrix Completion, tech. rep., Dept. of Electrical Engineering, Stanford University, 2009.
|
[23]
|
H. Kim and H. Park, Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method, SIAM J. Matrix Anal. Appl., 30 (2008), 713-730.
doi: 10.1137/07069239X.
|
[24]
|
J. Kim and H. Park, Sparse Nonnegative Matrix Factorization for Clustering, tech. rep., Georgia Institute of Technology, 2008. Technical Report GT-CSE-08-01.
|
[25]
|
K. Lee and Y. Bresler, Admira: atomic decomposition for minimum rank approximation, IEEE Trans. Inf. Theor., 56 (2010), 4402-4416.
doi: 10.1109/TIT.2010.2054251.
|
[26]
|
M. Li, D. Sun and K.-C. Toh, A convergent 3-block semi-proximal admm for convex minimization problems with one strongly convex block, Asia Pac. J. Oper. Res., 32 (2015), 1550024, 19 pp.
doi: 10.1142/S0217595915500244.
|
[27]
|
X. Liu, Z. Wen and Y. Zhang, An efficient gauss–newton algorithm for symmetric low-rank product matrix approximations, SIAM J. Optim., 25 (2015), 1571-1608.
doi: 10.1137/140971464.
|
[28]
|
Y. Liu, D. Sun and K.-C. Toh, An implementable proximal point algorithmic framework for nuclear norm minimization, Math. Program., 133 (2012), 399-436.
doi: 10.1007/s10107-010-0437-8.
|
[29]
|
Z. Liu and L. Vandenberghe, Interior-point method for nuclear norm approximation with application to system identification, SIAM J. Matrix Anal. A., 31 (2009), 1235-1256.
doi: 10.1137/090755436.
|
[30]
|
S. Ma, D. Goldfarb and L. Chen, Fixed point and bregman iterative methods for matrix rank minimization, Math. Program., 128 (2011), 321-353.
doi: 10.1007/s10107-009-0306-5.
|
[31]
|
R. Mazumder, T. Hastie and R. Tibshirani, Regularization Methods for Learning Incomplete Matrices, tech. rep., Stanford University, 2009.
|
[32]
|
R. Meka, P. Jain and I. S. Dhillon, Guaranteed Rank Minimization Via Singular Value Projection, CoRR, abs/0909.5457 (2009).
|
[33]
|
T. Morita and T. Kanade, A sequential factorization method for recovering shape and motion from image streams, IEEE Trans. Pattern Anal. Mach. Intell., 19 (1997), 858-867.
|
[34]
|
Y. Nesterov, Introductory Lectures on Convex Optimization, A basic course. Applied Optimization, 87. Kluwer Academic Publishers, Boston, MA, 2004.
doi: 10.1007/978-1-4419-8853-9.
|
[35]
|
B. Recht, A simpler approach to matrix completion, J. Mach. Learn. Res., 12 (2011), 3413-3430.
|
[36]
|
B. Recht, M. Fazel and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), 471-501.
doi: 10.1137/070697835.
|
[37]
|
Y. Shen, Z. Wen and Y. Zhang, Augmented lagrangian alternating direction method for matrix separation based on low-rank factorization, Optim. Methods Softw., 29 (2014), 239-263.
doi: 10.1080/10556788.2012.700713.
|
[38]
|
K.-C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pac. J. Optim., 6 (2010), 615-640.
|
[39]
|
C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: A factorization method, Int. J. Comput. Vision, 9 (1992), 137-154.
|
[40]
|
Z. Wen, W. Yin and Y. Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm, Math. Program. Comput., 4 (2012), 333-361.
doi: 10.1007/s12532-012-0044-1.
|
[41]
|
J. Yang and X. Yuan, An Inexact Alternating Direction Method for Trace Norm Regularized Least Squares Problem, tech. rep., Dept. of Mathematics, Nanjing University, 2010.
|
[42]
|
J. Yang, Y. Zhang and W. Yin, An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842-2865.
doi: 10.1137/080732894.
|
[43]
|
X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction method, Pac. J. Optim., 9 (2013), 167-180.
|
[44]
|
Z. Zhu, A. M.-C. So and Y. Ye, Fast and Near–Optimal Matrix Completion Via Randomized Basis Pursuit, tech. rep., Stanford University, 2009.
|
[45]
|
H. Zou, T. Hastie and R. Tibshirani, Sparse principal component analysis, J. Comput. Graph. Stat., 15 (2006), 265-286.
doi: 10.1198/106186006X113430.
|