# American Institute of Mathematical Sciences

## A new iterative identification method for damping control of power system in multi-interference

 1 School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2 Beijing Key Laboratory of Service Performance of Urban Rail Transit Vehicles, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 3 School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, 6845, Australia

* Corresponding author: Miao Yu

Received  August 2018 Revised  October 2018 Published  September 2019

Fund Project: The first author is supported by the Scholarship for Young University Teachers granted by China Scholarship Council (201709960017); National Natural Science Foundation of China (No.51407201); Research Funds for Beijing University of Civil Engineering and Architecture (No.X18121); The second author is supported by BUCEA Post Graduate Innovation Project (No.PG2012085).

In this paper, we consider the closed-loop model of a power system in a multi-interference environment. For a multi-interference power system, the closed-loop identification is a difficult task. Yet, the model identification error can degrade the effect of the damping control. This could lead to instability of the power grid. Thus, for the closed-loop identification, we propose an iterative online identification algorithm based on the recursive least squares method and the v-gap distance. The convergence of the algorithm is proved by using direct method. The proposed algorithm is applied to the New England system, for which the results obtained are compared with those obtained using the prediction error method and the Runge-Kutta method. From the simulation study being carried out on the IEEE 39-bus New England system, we observe that by using the iterative identification algorithm proposed in this paper, the output response time is reduced by about half when compared with those obtained by using the prediction error method and the Runge-Kutta method. Also, the number of oscillations in the output response is less. These clearly indicate that the algorithm proposed can effectively suppress low frequency oscillation. As for the amplitudes of the output responses produced by the three methods, they are basically the same.

Citation: Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multi-interference. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020104
##### References:

show all references

##### References:
Closed-loop Power System Model
Closed-loop Power System Identification Model
The flow chart of iterative identification algorithm based on RLS and $v$-gap
IEEE 39-bus New England test system
The optimal parameters of the New England system being identified by the RLS parameter estimation
The Bode diagrams of the identified model and the initial model for New England system
Comparison of output responses for New England system
The $v$-gap distance between $G$ and $B_i$ for New England system
The output responses obtained by different identification methods for New England system
 Runge-Kutta Iterative identification Prediction Error Time/s 70 29 39 Amplitude/dB 0.912 0.984 0.883
 Runge-Kutta Iterative identification Prediction Error Time/s 70 29 39 Amplitude/dB 0.912 0.984 0.883
The frequency stability margin and the $v$-gap distance corresponding to each identified data for New England system
 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 The frequency stability margin 0.0447 0.0269 0.0325 0.0622 0.1272 0.1257 v-gap distance 0.5899 0.5660 0.4151 0.1462 0.1099 0.1048 Group 7 Group 8 Group 9 Group 10 Group 11 Group 12 The frequency stability margin 0.1258 0.1178 0.1177 0.1191 0.1193 0.1192 v-gap distance 0.1041 0.0645 0.0589 0.0590 0.0610 0.0645
 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 The frequency stability margin 0.0447 0.0269 0.0325 0.0622 0.1272 0.1257 v-gap distance 0.5899 0.5660 0.4151 0.1462 0.1099 0.1048 Group 7 Group 8 Group 9 Group 10 Group 11 Group 12 The frequency stability margin 0.1258 0.1178 0.1177 0.1191 0.1193 0.1192 v-gap distance 0.1041 0.0645 0.0589 0.0590 0.0610 0.0645
 [1] Yan Tang. Convergence analysis of a new iterative algorithm for solving split variational inclusion problems. Journal of Industrial & Management Optimization, 2020, 16 (2) : 945-964. doi: 10.3934/jimo.2018187 [2] J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 [3] Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 [4] Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109 [5] Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021 [6] Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193 [7] Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023 [8] Xinwen Luo, Weize Liu, Zhiyi Huo, Dayong Xu. Modeling and control algorithm design for power-assisted steering stability of electric vehicle. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020205 [9] Hyukjin Lee, Cheng-Chew Lim, Jinho Choi. Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1083-1099. doi: 10.3934/dcdsb.2011.16.1083 [10] Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175 [11] Qi Yang, Lei Wang, Enmin Feng, Hongchao Yin, Zhilong Xiu. Identification and robustness analysis of nonlinear hybrid dynamical system of genetic regulation in continuous culture. Journal of Industrial & Management Optimization, 2020, 16 (2) : 579-599. doi: 10.3934/jimo.2018168 [12] Henk Broer, Henk Dijkstra, Carles Simó, Alef Sterk, Renato Vitolo. The dynamics of a low-order model for the Atlantic multidecadal oscillation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 73-107. doi: 10.3934/dcdsb.2011.16.73 [13] Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883 [14] Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322 [15] M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605 [16] Simai He, Min Li, Shuzhong Zhang, Zhi-Quan Luo. A nonconvergent example for the iterative water-filling algorithm. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 147-150. doi: 10.3934/naco.2011.1.147 [17] Lingling Lv, Zhe Zhang, Lei Zhang, Weishu Wang. An iterative algorithm for periodic sylvester matrix equations. Journal of Industrial & Management Optimization, 2018, 14 (1) : 413-425. doi: 10.3934/jimo.2017053 [18] Fabián Crocce, Ernesto Mordecki. A non-iterative algorithm for generalized pig games. Journal of Dynamics & Games, 2018, 5 (4) : 331-341. doi: 10.3934/jdg.2018020 [19] Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293 [20] Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

2018 Impact Factor: 0.545

## Tools

Article outline

Figures and Tables