In this paper, we study a variant of the state-dependent sweeping process with velocity constraint. The constraint $ {C(\cdot, u)} $ depends upon the unknown state $ u $, which causes one of the main difficulties in the mathematical treatment of quasi-variational inequalities. Our aim is to show how a fixed point approach can lead to an existence theorem for this implicit differential inclusion. By using Schauder's fixed point theorem combined with a recent existence and uniqueness theorem in the case where the moving set $ C $ does not depend explicitly on the state $ u $ (i.e. $ C: = C(t) $) given in [
Citation: |
[1] |
V. Acary, O. Bonnefon and B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, Springer, Lecture notes in electrical engineering, 2011.
doi: 10.1007/978-90-481-9681-4.![]() ![]() ![]() |
[2] |
K. Addi, S. Adly, B. Brogliato and D. Goeleven, A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics, Nonlinear Anal. Hybrid Syst., 1 (2007), 30-43.
doi: 10.1016/j.nahs.2006.04.001.![]() ![]() ![]() |
[3] |
S. Adly and T. Haddad, An implicit sweeping process approach to quasistatic evolution variational inequalities, SIAM J. Math. Anal., 50 (2018), 761-778.
doi: 10.1137/17M1120658.![]() ![]() ![]() |
[4] |
S. Adly, T. Haddad and L. Thibault, Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities, Math. Program. Ser. B, 148 (2014), 5-47.
doi: 10.1007/s10107-014-0754-4.![]() ![]() ![]() |
[5] |
S. Adly and B. K. Le, On semicoercive sweeping process with velocity constraint, Optimization letters, 12 (2018), 831-843.
doi: 10.1007/s11590-017-1149-2.![]() ![]() ![]() |
[6] |
D. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
![]() ![]() |
[7] |
C. Henry, An existence theorem for a class of differential equations with multivalued right-hand side, J. Math. Anal. Appl., 41 (1973), 179-186.
doi: 10.1016/0022-247X(73)90192-3.![]() ![]() ![]() |
[8] |
B. Maury and J. Venel, A mathematical framework for a crowd motion model, C. R. Math. Acad. Sci., 346 (2008), 1245-1250.
doi: 10.1016/j.crma.2008.10.014.![]() ![]() ![]() |
[9] |
M. Kunze and M. D. P. Monteiro Marques, On parabolic quasi-variational inequalities and state-dependent sweeping processes, Topol. Methods Nonlinear Anal., 12 (1998), 179-191.
doi: 10.12775/TMNA.1998.036.![]() ![]() ![]() |
[10] |
M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooths Mechanical Problems, Shokcks and dry Friction, Progress in Nonlinear Differential Equations an Their Applications, Birkhauser, 1993.
doi: 10.1007/978-3-0348-7614-8.![]() ![]() ![]() |
[11] |
J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.
doi: 10.1016/0022-0396(77)90085-7.![]() ![]() ![]() |
[12] |
J. J. Moreau, Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Engrg., 177 (1999), 329-349.
doi: 10.1016/S0045-7825(98)00387-9.![]() ![]() ![]() |
[13] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, I: Fixed Point Theorems, Springer-Verlag, New York, 1986.
![]() ![]() |
The moving set