\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An optimal pid tuning method for a single-link manipulator based on the control parametrization technique

  • *Corresponding author: Xiaodong Zeng

    *Corresponding author: Xiaodong Zeng 

This work was partially supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory, No. KGJZDSYS-2018-03, a grant from Sichuan Science and Technology Program under number 2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities (China)

Abstract Full Text(HTML) Figure(7) Related Papers Cited by
  • A control parametrization based optimal PID tuning scheme for a single-link manipulator is developed in this paper. The performance specifications of the control system are formulated as continuous state inequality constraints. Then, the PID optimal tuning problem of the single-link manipulator can be formulated as an optimal parameter selection problem subject to continuous inequality constraints. These continuous inequality constraints are handled by the constraint transcription method together with a local smoothing technique. In such a way, the transformed problem becomes an optimal parameter selection problem in a canonical form, which can be solved efficiently by control parametrization method. Since approach is using the gradient-based method, the corresponding gradient formulas for the cost function and the constraints are derived, respectively. The effectiveness of the proposed method is demonstrated by numerical simulations.

    Mathematics Subject Classification: 90c30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Performance Specifications

    Figure 2.  Manipulator angle $ q(t) $

    Figure 3.  Angle velocity $ \dot{q}(t) $

    Figure 4.  Torque $ \tau(t) $

    Figure 5.  Manipulator angle $ q(t) $ with disturbance

    Figure 6.  Angle velocity $ \dot{q}(t) $ with disturbance

    Figure 7.  Torque $ \tau(t) $ with disturbance

  • [1] K. H. AngG. Chong and Y. Li, PID control system analysis, design and technology, IEEE Transactions on Control Systems Technology, 13 (2005), 559-576.  doi: 10.1109/TCST.2005.847331.
    [2] K. J. Astrom, Toward intelligent control, IEEE Control Systems Magazine, 9 (1989), 60-64.  doi: 10.1109/37.24813.
    [3] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning, 2nd Edition, Research Triangle Park. North Carolina: Instrument Society of America, 1995.
    [4] K. J. Astrom and T. Hagglund, Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatica, 20 (1984), 645-651.  doi: 10.1016/0005-1098(84)90014-1.
    [5] K. J. Astrom and T. Hagglund, Automatic Tuning of PID Controllers, Research Triangle Park, North Carolina: Instrument Society of America, 1988.
    [6] E. R. Daniel and S. J. Kyoung, An integrated identification and control design methodology for multivariable process system application, IEEE: Control Systems Society, 20 (2000), 25-37.  doi: 10.1109/37.845036.
    [7] E. H. Bristol, Pattern recognition: An alternative to parameter identification in adaptive control, Automatica, 13 (1977), 197-202.  doi: 10.1016/0005-1098(77)90046-2.
    [8] Z. H. GongC. Y. Liu and Y. J. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.
    [9] L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J IFAC, 26 (1990), 371-375.  doi: 10.1016/0005-1098(90)90131-Z.
    [10] L. Jennings, K. L. Teo, M. Fisher, C. J. Goh and L. S. Jennings., MISER3 Version 2, Optimal Control Software, Theory and User Manual, Departmentof Mathematics, The University of Western Australia, Australia, 1997. MISER3 version 2, Optimal Control Software, Theory and User Manual, Department of Mathematics, The University of Western Australia, Australia, 1997.
    [11] T. W. Kraus and T. J. Myron, Self-tuning PID controller uses pattern recognition approach, Control Engineering, (1984), 106–111.
    [12] B. Li and K. L Teo, An optimal PID controller design for nonlinear constrained optimal control problems, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1101-1117.  doi: 10.3934/dcdsb.2011.16.1101.
    [13] B. LiC Xu and K. L. Teo, Time optimal Zermelo's navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224 (2013), 866-875.  doi: 10.1016/j.amc.2013.08.092.
    [14] B. LiC. J. YuK. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.  doi: 10.1007/s10957-011-9904-5.
    [15] J. K. Liu, Design of Robot Control System and MATLAB Simulation, Tsinghua University press, Beijing, Springer, Singapore, 2018. doi: 10.1007/978-981-10-5263-7.
    [16] C. Y. LiuZ. H. GongK. L. TeoJ. Sun and L. Caccetta, Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis: Hybrid Systems, 25 (2017), 1-20.  doi: 10.1016/j.nahs.2017.01.006.
    [17] C. Y. LiuZ. H. GongK. L. TeoR. Loxton and E. M. Feng, Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process, Optimization Letters, 12 (2018), 1249-1264.  doi: 10.1007/s11590-016-1105-6.
    [18] C. Y. LiuR. LoxtonQ. Lin and K. L. Teo, Dynamic optimization for switched time-delay systems with state-dependent switching conditions, SIAM Journal on Control and Optimization, 56 (2018), 3499-3523.  doi: 10.1137/16M1070530.
    [19] C. LiuZ. GongH. W. J. Lee and K. L. Teo, Robust bi-objective optimal control of 1, 3-propanediol microbial batch production process, Journal of Process Control, 78 (2019), 170-182.  doi: 10.1016/j.jprocont.2018.10.001.
    [20] C. Y. Liu, Z. H. Gong, K. L. Teo, J. Sun and L. Caccetta, Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis: Hybrid Systems, 25 (2017), 1-20. doi: 10.1016/j.nahs.2017.01.006.
    [21] C. Y. LiuR. Loxton and K. L. Teo, A computational method for solving time-delay optimal control problems with free terminal time, Systems and Control Letters, 72 (2014), 53-60.  doi: 10.1016/j.sysconle.2014.07.001.
    [22] C. Y. LiuZ. H. Gong and E. M. Feng, Optimal control for a nonlinear time-delay system in fed-batch fermentation, Pacific Journal of Optimization, 9 (2013), 595-612. 
    [23] C. Y. LiuZ. H. GongB. Y. Shen and E. M. Feng, Modelling and optimal control for a fed-batch fermentation process, Applied Mathematical Modelling, 37 (2013), 695-706.  doi: 10.1016/j.apm.2012.02.044.
    [24] C. Y. Liu and Z. H. Gong, Optimal Control of Switched Systems Arising in Fermentation Processes, Springer Berlin Heidelberg, 2014. doi: 10.1007/978-3-662-43793-3.
    [25] C. Y. LiuZ. H. Gong and K. L. Teo, Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data, Applied Mathematical Modelling, 53 (2018), 353-368.  doi: 10.1016/j.apm.2017.09.007.
    [26] P. Mu, L. Wang and C. Y. Liu, A control parameterization method to solve the fractional-order optimal control problem, Journal of Optimization Theory and Applications, (2017), 1–14. doi: 10.1007/s10957-017-1163-7.
    [27] Y. NishikawaN. Sannomiya and T. Ohta, A method for auto-tuning of PID control parameters, Automatica, 20 (1984), 321-332.  doi: 10.1016/0005-1098(84)90047-5.
    [28] H. L. Shu, PID neural network multivariable control system analysis, Acta Automatica Sinica, 25 (1999), 105-111. 
    [29] Y. H. Tao, Y. X. Yin and L. S. Ge, New PID Control and Application, Machinery Industry Press, Beijing, 1998.
    [30] K. L. TeoL. S. Zhang and Y. Q, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequalit constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.  doi: 10.3934/jimo.2012.8.485.
    [31] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach for Optimal Control Problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, copublished in the united states with John Wiley and Sons, Inc, NewYork, 1991.
    [32] K. L. TeoL. S. JenningsH. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, J. Austral. Math. Soc. Ser. B, 40 (1999), 314-335.  doi: 10.1017/S0334270000010936.
    [33] K. L. TeoL. S. Zhang and Y. Q, Bai: A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial Management and Optimization, 6 (2010), 895-910.  doi: 10.3934/jimo.2010.6.895.
    [34] W. WangJ. T. Zhang and T. Y. Chai, Summary of advanced tuning methods for PID parameters, Acta Automatica Sinica, 26 (2000), 347-355. 
    [35] Y. G. Wang and H. H. Shao, A self stabilization optimization based on sensitivity PID controller, Acta Automatica Sinica, 27 (2001), 140-143. 
    [36] C. Z. Wu and K. L. Teo, Global impulsive optimal control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450.  doi: 10.3934/jimo.2006.2.435.
    [37] F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. Yu and L. Jennings, VISUAL MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.
    [38] C. J. YuB. LiR. Loxton and K. L. Teo, Optimal discrete-valued control computation, Journal of Global Optimization, 56 (2013), 503-518.  doi: 10.1007/s10898-012-9858-7.
    [39] J. L. YuanC. Y. LiuX. ZhangJ. XieE. FengH. C. Yin and Z. L. Xiu, Optimal control of a batch fermentation process with nonlinear time- delay and free terminal time and cost sensitivity constraint, Journal of Process Control, 44 (2016), 41-52.  doi: 10.1016/j.jprocont.2016.05.001.
    [40] J. L. YuanY. D. ZhangJ. X. YeJ. XieK. L. TeoX. ZhuE. FengH. Yin and Z. L. Xiu, Robust parameter identification using parallel global optimization for a batch nonlinear enzyme-catalytic time delayed process presenting metabolic discontinuities, Applied Mathematical Modeling, 46 (2017), 554-571.  doi: 10.1016/j.apm.2017.01.079.
    [41] J. L. YuanX. ZhangC. Y. liuL. ChangJ. XieE. FengH. C. Yin and Z. L. Xiu, Robust optimization for nonlinear time delay dynamical system of dha regulon with cost sensitivity constraint in batch culture, Communications in Nonlinear Science and Numerical Simulation, 38 (2016), 140-171.  doi: 10.1016/j.cnsns.2016.02.008.
    [42] J. L. Yuan, X. Zhu, X. Zhang, H. C. Yin, E. Feng and Z. L. Xiu, Robust identification of enzymatic nonlinear dynamical systems for 1, 3-propanediol transport mechanisms in microbial batch culture, Applied Mathematics and Computation, textbf232 (2014), 150–163. doi: 10.1016/j.amc.2014.01.027.
    [43] Z. Q. Zhang and H. H. Shao, An optimal tuning method for PID parameters based on phase margin, Journal of Shanghai Jiaotong University, 34 (2000), 623-625. 
    [44] M. Zhuang and D. P. Atherton, PID controller design for a TITO system, IEEE Proceedings: Control Theory Application, 141 (1994), 111-120.  doi: 10.23919/ACC.1993.4793493.
    [45] J. G. Ziegler, Optimum seting for automatic controllers, Trans Asme, 64 (1942), 759-768. 
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(1866) PDF downloads(439) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return