June  2020, 13(6): 1867-1882. doi: 10.3934/dcdss.2020110

Design of green bonds by double-barrier options

1. 

Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and Economics, Tianjin 300222, China

2. 

College of Science, Tianjin University of Commerce, Tianjin 300134, China

3. 

Department of Mathematics and Statistics, Curtin University, Perth, WA6845, Australia

* Corresponding author: Zhuo Yang

Received  September 2018 Revised  October 2018 Published  September 2019

Fund Project: This project was supported in part by the National Basic Research Program (2012CB955804), the Major Research Plan of the National Natural Science Foundation of China (91430108), the National Natural Science Foundation of China (11771322), the Social Science Fund of Tianjin (TJYJ18023), and the Key Projects of Ministry of Education (DIA160334)

Green finance is an innovative model that can promote sustainable economic development. The green bonds also develop gradually as a part of green finance. The green bonds are designed to fund the projects of positive environmental impact. If the green bonds are superior to other debt securities, they will attract more investors' participation in green energy projects. Thus, the design of green bonds is crucial to the development of green bonds market. This article assumes that the floating rate of green bonds is linked to carbon price, and carbon price is described by a jump diffusion process. The carbon price fluctuation can lead to interest rate fluctuation of green bonds. We set two boundary values of carbon price, and the coupon rate is revalued when the carbon price reaches the boundary. The higher the carbon price is, the higher the coupon rate is to be paid by issuers. Thus, the boundary can impel issuers to boost energy savings and emission-reduction, and the higher interest rate will also attract more investors to invest in green bonds. The lower the carbon price is, the lower the interest rate is to be paid by issuers. Accordingly, the boundary may encourage issuers to boost emission reduction. This design can monitor and incentivize issuers to make more contribution to green finance. Furthermore, the design is characterized by the double-barrier option, such that the interest rate of green bonds can be obtained by double-barrier option pricing. Subsequently, the central difference method and the composite trapezoidal formula are employed to obtain the numerical solution. Finally, we conduct the sensitivity analysis of the model.

Citation: Shuhua Zhang, Zhuo Yang, Song Wang. Design of green bonds by double-barrier options. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1867-1882. doi: 10.3934/dcdss.2020110
References:
[1]

As You Sow, 2014. http://www.gogreenbonds.org/new-report-green-bonds-in-brief-risk-reward-and-opportunity/ Google Scholar

[2]

N. B. Behmiri and M. Maner, The role of outliers and oil price shocks on volatility of metal prices, Resour. Policy., 46 (2015), 139-150.   Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[4]

F. Black and J. C. Cox, Valuing corprate securities: Some effects of bond indenture provisions, The Journal of Finance, 2 (1976), 351-366.   Google Scholar

[5]

D. A. Bloch, The pricing of carbon bonds and other index-linked carbon derivatives, Register to Save Articles to Your Library, 2014, 16pp, http://ssrn.com/abstract=1763168. doi: 10.2139/ssrn.1763168.  Google Scholar

[6]

M. Burke, F. González, P. Baylis, S. H.Neal, C. Baysan, S. Basu and S. Hsiang, Higher temperatures increase suicide rates in the United States and Mexico, Nature Climate Change, 8 (2018), 723–729, https://www.nature.com/articles/s41558-018-0222-x. doi: 10.1038/s41558-018-0222-x.  Google Scholar

[7]

N. CaiN. Chen and X. W. Wan, Pricing double-barrier options under a flexible jump diffusion model, Operation Research Letters, 37 (2009), 163-167.  doi: 10.1016/j.orl.2009.02.006.  Google Scholar

[8]

P. K. Chugan, Y. Mungra and K. Mehta, Challenges and policy implications for marketing green bonds, Consumer Behaviour and Contemporary Marketing Strategy, 2017,371–384. Google Scholar

[9]

G. DaskalakisD. Psychoyios and R. N. Markellos, Modeling CO2 emissions allowance prices and derivatives: Evidence from the European trading scheme., J. Bank. Financ., 33 (2009), 1230-1241.  doi: 10.1016/j.jbankfin.2009.01.001.  Google Scholar

[10]

S. Dietz, A. Bowen, C. Dixon and P. Gradwell, "Climate value at risk" of global financial assets, Nature Climate Change., 6 (2016), 676–679, https://www.nature.com/articles/nclimate2972.pdf. doi: 10.1038/nclimate2972.  Google Scholar

[11]

A. Dutta, Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk, Journal of Cleaner Production, 172 (2018), 2773-2781.  doi: 10.1016/j.jclepro.2017.11.135.  Google Scholar

[12]

M. Flaherty, A. Gevorkyan, S. Radpour and W. Semmler, Financing climate policies through climate bonds - A three stage model and empirics, Research in International Business and Finance, (2016), 1–12. Google Scholar

[13]

G. Fusai and M. C. Recchioni, Analysis of quadrature methods for pricing discrete barrier options, J. Econom. Dynam. Control, 31 (2007), 826-860.  doi: 10.1016/j.jedc.2006.03.002.  Google Scholar

[14]

G. FusaiI. D. Abrahams and C. Sgarra, An exact analytical solution for discrete barrier options, Finance and Stochastics, 10 (2006), 1-26.  doi: 10.1007/s00780-005-0170-y.  Google Scholar

[15]

F. GaoJ. Guo and Q. B. Zhao, The barrier options-based research of the value of government guarantees in frastructure projects, Forecasting, 2 (2007), 76-80.   Google Scholar

[16]

M. GoldmanH. Sosin and M. Gatto, Path dependent options: Buy at the low, sell at the high, Journal of Finance, 34 (1979), 1111-1127.   Google Scholar

[17]

P. HartmannV. A. Ibáñez and F. J. F. Sainz, Green branding effects on attitude: Functional versus emotional positioning strategies, Marketing Intelligence & Planning, 23 (2005), 9-29.  doi: 10.1108/02634500510577447.  Google Scholar

[18]

G. Inderst, C. Kaminker and F. Stewart, Defining and measuring green investments: Implications for institutional investors, asset allocations, oecd working papers on finance, Insurance and Private Pensions, 2012, 1–55. Google Scholar

[19]

J. JeonJ. H. Yoon and C. R. Park, An analytic expansion method for the valuation of double-barrier options under a stochastic volatility model, Journal of Mathematical Analysis and Applications, 449 (2017), 207-227.  doi: 10.1016/j.jmaa.2016.11.061.  Google Scholar

[20]

L. Jiang, C. Xu, X. Ren and S. Li, The Mathematical Model and Case Study for the Price of Financial Derivatives, (in Chinese), High Education Press, Beijing, 2008.  Google Scholar

[21]

H. Jiang, The application of barrier option in avoiding foreign exchange risk, Technology and Market, 3 (2009), 24-25.   Google Scholar

[22]

B. Kamrad and P. Ritchken, Multinomial approximating models for options with kstate variables, Manage. Sci., 37 (1991), 1640-1652.   Google Scholar

[23]

J. X. Liu and G. Q. Yang, The comparison of price risk transfer mechanism between agricultural commodity futures market and option market, Economic Forum, 15 (2005), 72-73.   Google Scholar

[24]

R. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Finacial Economics, 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[25]

R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.  Google Scholar

[26]

Nielsen, Global consumers are willing to put their money where their heart is when it comes to goods and services from companies comitted to social responsibility, 2014, http://www.nielsen.com/apac/en/press-room/2014/global-consumers-are-willing-to-put-their-money-where-their-hearts-are.html Google Scholar

[27]

M. Northrop, Is the post-fossil fuel era now inevitable?, 2016, https://www.rbf.org/news/michael-northrop-is-the-post-fossil-fuel-era-now-inevitable Google Scholar

[28]

S. K. Park, Investors as regulators: green bonds and the governance chanllenges of sustainanble finance revolution, 2018, https://heinonline.org/HOL/LandingPage?handle=hein.journals/stanit54&div=5&id=&page=. Google Scholar

[29]

C. Pelizzari, Pricing Inflation Linked Bonds, Quantitave Finance, 2010. https://www.ssoar.info/ssoar/bitstream/handle/document/23318/ssoar-2010-03-pelizzari_et_al-pricing_inflation_linked_bonds.pdf?sequence=1. Google Scholar

[30]

H. Reichelt, Green bonds: A model to mobilise private capital to fund climate change mitigation and adaptation projects, The euromoney environmental finance handbook, 2010. Google Scholar

[31]

A. Sepp, Analytical pricing of the double-barrier options under a doubleexponential jump diffusion processes: Applications of Laplace transform, International Journal of Theoretical and Applied Finance, 7 (2004), 151-175.  doi: 10.1142/S0219024904002402.  Google Scholar

[32]

A. R. Stephen, Options and efficiency, Quarterly Journal of Economics, 90 (1976), 121-149.   Google Scholar

[33]

Y. TianE. Roca Akimov and V. Wang, Does the carbon market help or hurt the stock price of electricity companies? Further evidence from the European context, J. Clean. Prod., 112 (2016), 1-8.   Google Scholar

[34]

Toyota Financial Services (TFS) Issues Auto Industry's First-Ever Asset-Backed Green Bond, https://www.prnewswire.com/news-releases/toyota-financial-services-tfs-issues-auto-industrys-first-ever-asset-backed-green-bond-251943831.html Google Scholar

[35]

A. Tripathy, Translating to risk: The legibility of climate change and nature in the green bond market, Economic Anthropology, 4 (2017), 239-250.  doi: 10.1002/sea2.12091.  Google Scholar

[36]

Y. P. XiaoX. F. WangX. L. Wang and Z. C. Wu, Trading wind power with barrier option, Applied Energy, 182 (2016), 232-242.  doi: 10.1016/j.apenergy.2016.08.123.  Google Scholar

[37]

United Nations Climate Change Conference, 2015, https://www.politiekemonitor.nl/9353000/1/j9tvgajcor7dxyk_j9vvioaf0kku7zz/vjmhg41ub7pp. Google Scholar

show all references

References:
[1]

As You Sow, 2014. http://www.gogreenbonds.org/new-report-green-bonds-in-brief-risk-reward-and-opportunity/ Google Scholar

[2]

N. B. Behmiri and M. Maner, The role of outliers and oil price shocks on volatility of metal prices, Resour. Policy., 46 (2015), 139-150.   Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[4]

F. Black and J. C. Cox, Valuing corprate securities: Some effects of bond indenture provisions, The Journal of Finance, 2 (1976), 351-366.   Google Scholar

[5]

D. A. Bloch, The pricing of carbon bonds and other index-linked carbon derivatives, Register to Save Articles to Your Library, 2014, 16pp, http://ssrn.com/abstract=1763168. doi: 10.2139/ssrn.1763168.  Google Scholar

[6]

M. Burke, F. González, P. Baylis, S. H.Neal, C. Baysan, S. Basu and S. Hsiang, Higher temperatures increase suicide rates in the United States and Mexico, Nature Climate Change, 8 (2018), 723–729, https://www.nature.com/articles/s41558-018-0222-x. doi: 10.1038/s41558-018-0222-x.  Google Scholar

[7]

N. CaiN. Chen and X. W. Wan, Pricing double-barrier options under a flexible jump diffusion model, Operation Research Letters, 37 (2009), 163-167.  doi: 10.1016/j.orl.2009.02.006.  Google Scholar

[8]

P. K. Chugan, Y. Mungra and K. Mehta, Challenges and policy implications for marketing green bonds, Consumer Behaviour and Contemporary Marketing Strategy, 2017,371–384. Google Scholar

[9]

G. DaskalakisD. Psychoyios and R. N. Markellos, Modeling CO2 emissions allowance prices and derivatives: Evidence from the European trading scheme., J. Bank. Financ., 33 (2009), 1230-1241.  doi: 10.1016/j.jbankfin.2009.01.001.  Google Scholar

[10]

S. Dietz, A. Bowen, C. Dixon and P. Gradwell, "Climate value at risk" of global financial assets, Nature Climate Change., 6 (2016), 676–679, https://www.nature.com/articles/nclimate2972.pdf. doi: 10.1038/nclimate2972.  Google Scholar

[11]

A. Dutta, Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk, Journal of Cleaner Production, 172 (2018), 2773-2781.  doi: 10.1016/j.jclepro.2017.11.135.  Google Scholar

[12]

M. Flaherty, A. Gevorkyan, S. Radpour and W. Semmler, Financing climate policies through climate bonds - A three stage model and empirics, Research in International Business and Finance, (2016), 1–12. Google Scholar

[13]

G. Fusai and M. C. Recchioni, Analysis of quadrature methods for pricing discrete barrier options, J. Econom. Dynam. Control, 31 (2007), 826-860.  doi: 10.1016/j.jedc.2006.03.002.  Google Scholar

[14]

G. FusaiI. D. Abrahams and C. Sgarra, An exact analytical solution for discrete barrier options, Finance and Stochastics, 10 (2006), 1-26.  doi: 10.1007/s00780-005-0170-y.  Google Scholar

[15]

F. GaoJ. Guo and Q. B. Zhao, The barrier options-based research of the value of government guarantees in frastructure projects, Forecasting, 2 (2007), 76-80.   Google Scholar

[16]

M. GoldmanH. Sosin and M. Gatto, Path dependent options: Buy at the low, sell at the high, Journal of Finance, 34 (1979), 1111-1127.   Google Scholar

[17]

P. HartmannV. A. Ibáñez and F. J. F. Sainz, Green branding effects on attitude: Functional versus emotional positioning strategies, Marketing Intelligence & Planning, 23 (2005), 9-29.  doi: 10.1108/02634500510577447.  Google Scholar

[18]

G. Inderst, C. Kaminker and F. Stewart, Defining and measuring green investments: Implications for institutional investors, asset allocations, oecd working papers on finance, Insurance and Private Pensions, 2012, 1–55. Google Scholar

[19]

J. JeonJ. H. Yoon and C. R. Park, An analytic expansion method for the valuation of double-barrier options under a stochastic volatility model, Journal of Mathematical Analysis and Applications, 449 (2017), 207-227.  doi: 10.1016/j.jmaa.2016.11.061.  Google Scholar

[20]

L. Jiang, C. Xu, X. Ren and S. Li, The Mathematical Model and Case Study for the Price of Financial Derivatives, (in Chinese), High Education Press, Beijing, 2008.  Google Scholar

[21]

H. Jiang, The application of barrier option in avoiding foreign exchange risk, Technology and Market, 3 (2009), 24-25.   Google Scholar

[22]

B. Kamrad and P. Ritchken, Multinomial approximating models for options with kstate variables, Manage. Sci., 37 (1991), 1640-1652.   Google Scholar

[23]

J. X. Liu and G. Q. Yang, The comparison of price risk transfer mechanism between agricultural commodity futures market and option market, Economic Forum, 15 (2005), 72-73.   Google Scholar

[24]

R. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Finacial Economics, 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[25]

R. C. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.  Google Scholar

[26]

Nielsen, Global consumers are willing to put their money where their heart is when it comes to goods and services from companies comitted to social responsibility, 2014, http://www.nielsen.com/apac/en/press-room/2014/global-consumers-are-willing-to-put-their-money-where-their-hearts-are.html Google Scholar

[27]

M. Northrop, Is the post-fossil fuel era now inevitable?, 2016, https://www.rbf.org/news/michael-northrop-is-the-post-fossil-fuel-era-now-inevitable Google Scholar

[28]

S. K. Park, Investors as regulators: green bonds and the governance chanllenges of sustainanble finance revolution, 2018, https://heinonline.org/HOL/LandingPage?handle=hein.journals/stanit54&div=5&id=&page=. Google Scholar

[29]

C. Pelizzari, Pricing Inflation Linked Bonds, Quantitave Finance, 2010. https://www.ssoar.info/ssoar/bitstream/handle/document/23318/ssoar-2010-03-pelizzari_et_al-pricing_inflation_linked_bonds.pdf?sequence=1. Google Scholar

[30]

H. Reichelt, Green bonds: A model to mobilise private capital to fund climate change mitigation and adaptation projects, The euromoney environmental finance handbook, 2010. Google Scholar

[31]

A. Sepp, Analytical pricing of the double-barrier options under a doubleexponential jump diffusion processes: Applications of Laplace transform, International Journal of Theoretical and Applied Finance, 7 (2004), 151-175.  doi: 10.1142/S0219024904002402.  Google Scholar

[32]

A. R. Stephen, Options and efficiency, Quarterly Journal of Economics, 90 (1976), 121-149.   Google Scholar

[33]

Y. TianE. Roca Akimov and V. Wang, Does the carbon market help or hurt the stock price of electricity companies? Further evidence from the European context, J. Clean. Prod., 112 (2016), 1-8.   Google Scholar

[34]

Toyota Financial Services (TFS) Issues Auto Industry's First-Ever Asset-Backed Green Bond, https://www.prnewswire.com/news-releases/toyota-financial-services-tfs-issues-auto-industrys-first-ever-asset-backed-green-bond-251943831.html Google Scholar

[35]

A. Tripathy, Translating to risk: The legibility of climate change and nature in the green bond market, Economic Anthropology, 4 (2017), 239-250.  doi: 10.1002/sea2.12091.  Google Scholar

[36]

Y. P. XiaoX. F. WangX. L. Wang and Z. C. Wu, Trading wind power with barrier option, Applied Energy, 182 (2016), 232-242.  doi: 10.1016/j.apenergy.2016.08.123.  Google Scholar

[37]

United Nations Climate Change Conference, 2015, https://www.politiekemonitor.nl/9353000/1/j9tvgajcor7dxyk_j9vvioaf0kku7zz/vjmhg41ub7pp. Google Scholar

Figure 1.  Index-linked green bonds issued by World Bank
Figure 2.  The carbon prices and its rates of return from 2012 to 2018
Figure 3.  The green bond interest rates when it has no barriers and it has barriers
Figure 4.  The green bond interest rates when the barrier changes in non barriers and barriers
Figure 5.  The effects of parameters $ r $ and $ {\sigma} $ on the green bond interest rate
Figure 6.  The effects of parameters $ {\lambda} $ on the green bond interest rate
Table 1.  Parameters' values
ParametersValues Parameters Values
$r$ 0.019 $\delta$ 0.5
$\sigma$ 0.106 $\mu$ -0.06
$\lambda$ 0.04
ParametersValues Parameters Values
$r$ 0.019 $\delta$ 0.5
$\sigma$ 0.106 $\mu$ -0.06
$\lambda$ 0.04
[1]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[2]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[3]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[4]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[5]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[6]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[9]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[10]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[11]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[12]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[15]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[16]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[17]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[18]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[19]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[20]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (257)
  • HTML views (348)
  • Cited by (0)

Other articles
by authors

[Back to Top]