December  2020, 13(12): 3305-3317. doi: 10.3934/dcdss.2020111

Fractional Ostrowski-Sugeno Fuzzy univariate inequalities

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Received  August 2018 Revised  December 2018 Published  October 2019

Here we present fractional univariate Ostrowski-Sugeno Fuzzy type inequalities. These are of Ostrowski-like inequalities in the setting of Sugeno fuzzy integral and its special-particular properties. In a fractional environment, they give tight upper bounds to the deviation of a function from its Sugeno-fuzzy averages. The fractional derivatives we use are of Canavati and Caputo types. This work is greatly inspired by [8], [1] and [2].

Citation: George A. Anastassiou. Fractional Ostrowski-Sugeno Fuzzy univariate inequalities. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3305-3317. doi: 10.3934/dcdss.2020111
References:
[1]

G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-98128-4.  Google Scholar

[2]

G. A. Anastassiou, Advances on Fractional Inequalities, SpringerBriefs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4614-0703-4.  Google Scholar

[3]

G. A. Anastassiou, Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-17098-0.  Google Scholar

[4]

G. A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Studies in Computational Intelligence, 609. Springer, Cham, 2016. doi: 10.1007/978-3-319-21121-3.  Google Scholar

[5]

M. Boczek and M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetika (Prague), 52 (2016), 329-347.  doi: 10.14736/kyb-2016-3-0329.  Google Scholar

[6]

J. A. Canavati, The Riemann-Liouville integral, Nieuw Arch. Wisk., 5 (1987), 53-75.   Google Scholar

[7]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[8]

A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, (German) Comment. Math. Helv., 10 (1938), 226-227.  doi: 10.1007/BF01214290.  Google Scholar

[9]

E. Pap, Null-Additive Set functions, Mathematics and its Applications, 337, Kluwer Academic Publishers Group, Dordrecht; Ister Science, Bratislava, 1995.  Google Scholar

[10]

D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570.  doi: 10.1016/0022-247X(80)90101-8.  Google Scholar

[11]

M. Sugeno, Theory of Fuzzy Integrals and Its Applications[J], PhD thesis, Tokyo Institute of Technology, 1974. Google Scholar

[12] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4757-5303-5.  Google Scholar

show all references

References:
[1]

G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-98128-4.  Google Scholar

[2]

G. A. Anastassiou, Advances on Fractional Inequalities, SpringerBriefs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4614-0703-4.  Google Scholar

[3]

G. A. Anastassiou, Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-17098-0.  Google Scholar

[4]

G. A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Studies in Computational Intelligence, 609. Springer, Cham, 2016. doi: 10.1007/978-3-319-21121-3.  Google Scholar

[5]

M. Boczek and M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetika (Prague), 52 (2016), 329-347.  doi: 10.14736/kyb-2016-3-0329.  Google Scholar

[6]

J. A. Canavati, The Riemann-Liouville integral, Nieuw Arch. Wisk., 5 (1987), 53-75.   Google Scholar

[7]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[8]

A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, (German) Comment. Math. Helv., 10 (1938), 226-227.  doi: 10.1007/BF01214290.  Google Scholar

[9]

E. Pap, Null-Additive Set functions, Mathematics and its Applications, 337, Kluwer Academic Publishers Group, Dordrecht; Ister Science, Bratislava, 1995.  Google Scholar

[10]

D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570.  doi: 10.1016/0022-247X(80)90101-8.  Google Scholar

[11]

M. Sugeno, Theory of Fuzzy Integrals and Its Applications[J], PhD thesis, Tokyo Institute of Technology, 1974. Google Scholar

[12] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4757-5303-5.  Google Scholar
[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[3]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[4]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[5]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[6]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[7]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[8]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[9]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[10]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[11]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[12]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[13]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[14]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[15]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[16]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[17]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[18]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[19]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[20]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (163)
  • HTML views (405)
  • Cited by (0)

Other articles
by authors

[Back to Top]