December  2020, 13(12): 3305-3317. doi: 10.3934/dcdss.2020111

Fractional Ostrowski-Sugeno Fuzzy univariate inequalities

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Received  August 2018 Revised  December 2018 Published  December 2020 Early access  October 2019

Here we present fractional univariate Ostrowski-Sugeno Fuzzy type inequalities. These are of Ostrowski-like inequalities in the setting of Sugeno fuzzy integral and its special-particular properties. In a fractional environment, they give tight upper bounds to the deviation of a function from its Sugeno-fuzzy averages. The fractional derivatives we use are of Canavati and Caputo types. This work is greatly inspired by [8], [1] and [2].

Citation: George A. Anastassiou. Fractional Ostrowski-Sugeno Fuzzy univariate inequalities. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3305-3317. doi: 10.3934/dcdss.2020111
References:
[1]

G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-98128-4.

[2]

G. A. Anastassiou, Advances on Fractional Inequalities, SpringerBriefs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4614-0703-4.

[3]

G. A. Anastassiou, Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-17098-0.

[4]

G. A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Studies in Computational Intelligence, 609. Springer, Cham, 2016. doi: 10.1007/978-3-319-21121-3.

[5]

M. Boczek and M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetika (Prague), 52 (2016), 329-347.  doi: 10.14736/kyb-2016-3-0329.

[6]

J. A. Canavati, The Riemann-Liouville integral, Nieuw Arch. Wisk., 5 (1987), 53-75. 

[7]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[8]

A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, (German) Comment. Math. Helv., 10 (1938), 226-227.  doi: 10.1007/BF01214290.

[9]

E. Pap, Null-Additive Set functions, Mathematics and its Applications, 337, Kluwer Academic Publishers Group, Dordrecht; Ister Science, Bratislava, 1995.

[10]

D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570.  doi: 10.1016/0022-247X(80)90101-8.

[11]

M. Sugeno, Theory of Fuzzy Integrals and Its Applications[J], PhD thesis, Tokyo Institute of Technology, 1974.

[12] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4757-5303-5.

show all references

References:
[1]

G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. doi: 10.1007/978-0-387-98128-4.

[2]

G. A. Anastassiou, Advances on Fractional Inequalities, SpringerBriefs in Mathematics, Springer, New York, 2011. doi: 10.1007/978-1-4614-0703-4.

[3]

G. A. Anastassiou, Intelligent Mathematics: Computational Analysis, Intelligent Systems Reference Library, 5. Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-17098-0.

[4]

G. A. Anastassiou, Intelligent Comparisons: Analytic Inequalities, Studies in Computational Intelligence, 609. Springer, Cham, 2016. doi: 10.1007/978-3-319-21121-3.

[5]

M. Boczek and M. Kaluszka, On the Minkowaki-Hölder type inequalities for generalized Sugeno integrals with an application, Kybernetika (Prague), 52 (2016), 329-347.  doi: 10.14736/kyb-2016-3-0329.

[6]

J. A. Canavati, The Riemann-Liouville integral, Nieuw Arch. Wisk., 5 (1987), 53-75. 

[7]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.

[8]

A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, (German) Comment. Math. Helv., 10 (1938), 226-227.  doi: 10.1007/BF01214290.

[9]

E. Pap, Null-Additive Set functions, Mathematics and its Applications, 337, Kluwer Academic Publishers Group, Dordrecht; Ister Science, Bratislava, 1995.

[10]

D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl., 75 (1980), 562-570.  doi: 10.1016/0022-247X(80)90101-8.

[11]

M. Sugeno, Theory of Fuzzy Integrals and Its Applications[J], PhD thesis, Tokyo Institute of Technology, 1974.

[12] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4757-5303-5.
[1]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432

[3]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[4]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[5]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[6]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[7]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[8]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics and Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010

[9]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

[10]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[11]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[12]

Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611

[13]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[14]

Jin-Zi Yang, Yuan-Xin Li, Ming Wei. Fuzzy adaptive asymptotic tracking of fractional order nonlinear systems with uncertain disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1615-1631. doi: 10.3934/dcdss.2021144

[15]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[16]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial and Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[17]

Gang Chen, Zaiming Liu, Jingchuan Zhang. Analysis of strategic customer behavior in fuzzy queueing systems. Journal of Industrial and Management Optimization, 2020, 16 (1) : 371-386. doi: 10.3934/jimo.2018157

[18]

Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007

[19]

Jian Luo, Xueqi Yang, Ye Tian, Wenwen Yu. Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2743-2756. doi: 10.3934/jimo.2019078

[20]

Yahia Zare Mehrjerdi. A novel methodology for portfolio selection in fuzzy multi criteria environment using risk-benefit analysis and fractional stochastic. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021019

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (260)
  • HTML views (407)
  • Cited by (0)

Other articles
by authors

[Back to Top]