-
Previous Article
A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs
- DCDS-S Home
- This Issue
-
Next Article
The inverse volatility problem for American options
A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators
Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, Piazza della Repubblica, 13 - 61029 Urbino (PU), Italy |
We prove a cone-type criterion for a boundary point to be regular for the Dirichlet problem related to (possibly) degenerate Ornstein–Uhlenbeck operators in $ \mathbb{R}^N $. Our result extends the classical Zaremba cone criterion for the Laplace operator.
References:
[1] |
K. Beauchard and K. Pravda-Starov,
Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., 456 (2017), 496-524.
doi: 10.1016/j.jmaa.2017.07.014. |
[2] |
J.-M. Bony,
Principe du maximum, inégalité de Harnack et unicité du problèeme de Cauchy pour les opérateurs elliptiques dégénérés, (French)Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.
doi: 10.5802/aif.319. |
[3] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266 (2010), 789-816.
doi: 10.1007/s00209-009-0599-3. |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Math. Nachr., 286 (2013), 1087-1101.
doi: 10.1002/mana.201200189. |
[5] |
C. Cinti and E. Lanconelli,
Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Potential Anal., 30 (2009), 179-200.
doi: 10.1007/s11118-008-9112-6. |
[6] |
B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures, J. Math. Pures Appl. (9), 86 (2006), 310–321.
doi: 10.1016/j.matpur.2006.06.002. |
[7] |
S. Fornaro and A. Rhandi,
On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 5049-5058.
doi: 10.3934/dcds.2013.33.5049. |
[8] |
G. R. Goldstein, J. A. Goldstein and A. Rhandi,
Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential., Appl. Anal., 91 (2012), 2057-2071.
doi: 10.1080/00036811.2011.587809. |
[9] |
A. E. Kogoj,
On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524-1539.
doi: 10.1016/j.jde.2016.10.018. |
[10] |
A. E. Kogoj and S. Polidoro,
Harnack inequality for hypoelliptic second order partial differential operators, Potential Anal., 45 (2016), 545-555.
doi: 10.1007/s11118-016-9557-y. |
[11] |
E. Lanconelli and S. Polidoro,
On a class of hypoelliptic evolution operators, Partial differential equations, Ⅱ (Turin, 1993), Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63.
|
[12] |
P. Negrini, Punti regolari per aperti cilindrici in uno spazio $\beta $-armonico, (Italian) Boll. Un.
Mat. Ital. B (6), 2 (1983), 537–547. |
[13] |
S. Zaremba,
Sur le Principe de Dirichlet, (French) Acta Math., 34 (1911), 293-316.
doi: 10.1007/BF02393130. |
show all references
References:
[1] |
K. Beauchard and K. Pravda-Starov,
Null-controllability of non-autonomous Ornstein–Uhlenbeck equations, J. Math. Anal. Appl., 456 (2017), 496-524.
doi: 10.1016/j.jmaa.2017.07.014. |
[2] |
J.-M. Bony,
Principe du maximum, inégalité de Harnack et unicité du problèeme de Cauchy pour les opérateurs elliptiques dégénérés, (French)Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.
doi: 10.5802/aif.319. |
[3] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators, Math. Z., 266 (2010), 789-816.
doi: 10.1007/s00209-009-0599-3. |
[4] |
M. Bramanti, G. Cupini, E. Lanconelli and E. Priola,
Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients, Math. Nachr., 286 (2013), 1087-1101.
doi: 10.1002/mana.201200189. |
[5] |
C. Cinti and E. Lanconelli,
Riesz and Poisson-Jensen representation formulas for a class of ultraparabolic operators on Lie groups, Potential Anal., 30 (2009), 179-200.
doi: 10.1007/s11118-008-9112-6. |
[6] |
B. Farkas and A. Lunardi, Maximal regularity for Kolmogorov operators in $L^2$ spaces with respect to invariant measures, J. Math. Pures Appl. (9), 86 (2006), 310–321.
doi: 10.1016/j.matpur.2006.06.002. |
[7] |
S. Fornaro and A. Rhandi,
On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$-spaces, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 5049-5058.
doi: 10.3934/dcds.2013.33.5049. |
[8] |
G. R. Goldstein, J. A. Goldstein and A. Rhandi,
Weighted Hardy's inequality and the Kolmogorov equation perturbed by an inverse-square potential., Appl. Anal., 91 (2012), 2057-2071.
doi: 10.1080/00036811.2011.587809. |
[9] |
A. E. Kogoj,
On the Dirichlet problem for hypoelliptic evolution equations: Perron–Wiener solution and a cone-type criterion, J. Differential Equations, 262 (2017), 1524-1539.
doi: 10.1016/j.jde.2016.10.018. |
[10] |
A. E. Kogoj and S. Polidoro,
Harnack inequality for hypoelliptic second order partial differential operators, Potential Anal., 45 (2016), 545-555.
doi: 10.1007/s11118-016-9557-y. |
[11] |
E. Lanconelli and S. Polidoro,
On a class of hypoelliptic evolution operators, Partial differential equations, Ⅱ (Turin, 1993), Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63.
|
[12] |
P. Negrini, Punti regolari per aperti cilindrici in uno spazio $\beta $-armonico, (Italian) Boll. Un.
Mat. Ital. B (6), 2 (1983), 537–547. |
[13] |
S. Zaremba,
Sur le Principe de Dirichlet, (French) Acta Math., 34 (1911), 293-316.
doi: 10.1007/BF02393130. |
[1] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[2] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[3] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[4] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[5] |
Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85 |
[6] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[7] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[8] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[9] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[10] |
Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274 |
[11] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[12] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[13] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291 |
[14] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[15] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[16] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[17] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[18] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[19] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[20] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]