\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity

The authors are supported by the National Natural Science Foundation of China (11871231, 11162020)

Abstract Full Text(HTML) Figure(8) Related Papers Cited by
  • For the nonlinear Schrödinger (NLS) equation with fourth-order dispersion and dual power law nonlinearity, by using the method of dynamical systems, we investigate the bifurcations and exact traveling wave solutions. Because obtained traveling wave system is an integrable singular traveling wave system having a singular straight line and the origin in the phase plane is a high-order equilibrium point. We need to use the theory of singular systems to analyze the dynamics and bifurcation behavior of solutions of system. For $ m>1 $ and $ 0<m = \frac1n<\frac12 $, corresponding to the level curves given by $ H(\psi, y) = 0 $, the exact explicit bounded traveling wave solutions can be given. For $ m = 1 $, corresponding all bounded phase orbits and depending on the changes of system's parameters, all exact traveling wave solutions of the equation can be obtain.

    Mathematics Subject Classification: Primary: 34A05, 34C25-28, 34M55, 35Q51, 35Q53; Secondary: 58F05, 58F14, 58F30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The bifurcations of phase portraits of system (8) when $\Delta_1 <0$

    Figure 2.  The bifurcations of phase portraits of system (8) when $ k_1\beta\gamma<0 $

    Figure 3.  The bifurcations of phase portraits of system (8) when $ \beta<0, k_1<0, \Delta_1>0 $

    Figure 4.  The bifurcations of phase portraits of system (8) when $ \beta>0, k_1<0, \Delta_1>0 $

    Figure 5.  The level curves of defined by $ H(\psi, y) = 0 $

    Figure 6.  The changes of the level curves defined by $ H(\psi, y) = h $ of system (8)

    Figure 7.  The bifurcations of phase portraits of system (8) when $ k_1\beta\gamma<0 $

    Figure 8.  The bifurcations of phase portraits of system (8) for $ m = \frac1n, \beta<0 $

  • [1] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Second edition, revised. Die Grundlehren der mathematischen Wissenschaften, Band 67 Springer-Verlag, New York-Heidelberg, 1971.
    [2] J. LiJ. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2235-2260.  doi: 10.1142/S0218127406016033.
    [3] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4049-4065.  doi: 10.1142/S0218127407019858.
    [4] J. Li and  H. DaiOn the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach, Science Press, Beijing, 2007. 
    [5] J. LiSingular Nonlinear Travelling Wave Equations: Bifurcations and Exact solutions, Science Press, Beijing, 2013. 
    [6] J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650207, 27 pp. doi: 10.1142/S0218127416502072.
    [7] A. M. Shahoot, K. A. E. Alurrfi, I. M. Hassan and A. M. Almsri, Solitons and other exact solutions for two nonlinear PDEs in mathematical physics using the generalized projective riccati equations method,, Adv. Math. Phys., 2018 (2018), Art. ID 6870310, 11 pp. doi: 10.1155/2018/6870310.
    [8] N. K. VitanovZ. D. Dimitrova and T. I. Ivanova, On solitary wave solutions of a class of nonlinear partial differential equations based on the function $\frac{1}{\cosh^n(\alpha x+\beta t)}$,, Appl. Math. Compu., 315 (2017), 372-380.  doi: 10.1016/j.amc.2017.07.064.
    [9] G. Q. Xu, New types of exact solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation, Appl. Math. Comput., 217 (2011), 5967-5971.  doi: 10.1016/j.amc.2010.12.008.
    [10] E. M. ZayedA. G. Al-Nowehy and M. E. Elshater, Solitons and other solutions to nonlinear schrödinger equation with fourth-order dispersion and dual power law nonlinearity, Ric. Mat., 66 (2017), 531-552. 
  • 加载中

Figures(8)

SHARE

Article Metrics

HTML views(574) PDF downloads(428) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return