    November  2020, 13(11): 3083-3097. doi: 10.3934/dcdss.2020113

## Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity

 1 School of Mathematcal Science, Huaqiao University, Quanzhou, Fujian 362021, China 2 Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

Received  August 2018 Published  November 2020 Early access  October 2019

Fund Project: The authors are supported by the National Natural Science Foundation of China (11871231, 11162020)

For the nonlinear Schrödinger (NLS) equation with fourth-order dispersion and dual power law nonlinearity, by using the method of dynamical systems, we investigate the bifurcations and exact traveling wave solutions. Because obtained traveling wave system is an integrable singular traveling wave system having a singular straight line and the origin in the phase plane is a high-order equilibrium point. We need to use the theory of singular systems to analyze the dynamics and bifurcation behavior of solutions of system. For $m>1$ and $0<m = \frac1n<\frac12$, corresponding to the level curves given by $H(\psi, y) = 0$, the exact explicit bounded traveling wave solutions can be given. For $m = 1$, corresponding all bounded phase orbits and depending on the changes of system's parameters, all exact traveling wave solutions of the equation can be obtain.

Citation: Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113
##### References:
  P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Second edition, revised. Die Grundlehren der mathematischen Wissenschaften, Band 67 Springer-Verlag, New York-Heidelberg, 1971. Google Scholar  J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2235-2260.  doi: 10.1142/S0218127406016033.  Google Scholar  J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4049-4065.  doi: 10.1142/S0218127407019858.  Google Scholar  J. Li and H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach, Science Press, Beijing, 2007.   Google Scholar  J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact solutions, Science Press, Beijing, 2013.   Google Scholar  J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650207, 27 pp. doi: 10.1142/S0218127416502072.  Google Scholar  A. M. Shahoot, K. A. E. Alurrfi, I. M. Hassan and A. M. Almsri, Solitons and other exact solutions for two nonlinear PDEs in mathematical physics using the generalized projective riccati equations method,, Adv. Math. Phys., 2018 (2018), Art. ID 6870310, 11 pp. doi: 10.1155/2018/6870310.  Google Scholar  N. K. Vitanov, Z. D. Dimitrova and T. I. Ivanova, On solitary wave solutions of a class of nonlinear partial differential equations based on the function $\frac{1}{\cosh^n(\alpha x+\beta t)}$,, Appl. Math. Compu., 315 (2017), 372-380.  doi: 10.1016/j.amc.2017.07.064.  Google Scholar  G. Q. Xu, New types of exact solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation, Appl. Math. Comput., 217 (2011), 5967-5971.  doi: 10.1016/j.amc.2010.12.008.  Google Scholar  E. M. Zayed, A. G. Al-Nowehy and M. E. Elshater, Solitons and other solutions to nonlinear schrödinger equation with fourth-order dispersion and dual power law nonlinearity, Ric. Mat., 66 (2017), 531-552. Google Scholar

show all references

##### References:
  P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Second edition, revised. Die Grundlehren der mathematischen Wissenschaften, Band 67 Springer-Verlag, New York-Heidelberg, 1971. Google Scholar  J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 2235-2260.  doi: 10.1142/S0218127406016033.  Google Scholar  J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4049-4065.  doi: 10.1142/S0218127407019858.  Google Scholar  J. Li and H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach, Science Press, Beijing, 2007.   Google Scholar  J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact solutions, Science Press, Beijing, 2013.   Google Scholar  J. Li, W. Zhou and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650207, 27 pp. doi: 10.1142/S0218127416502072.  Google Scholar  A. M. Shahoot, K. A. E. Alurrfi, I. M. Hassan and A. M. Almsri, Solitons and other exact solutions for two nonlinear PDEs in mathematical physics using the generalized projective riccati equations method,, Adv. Math. Phys., 2018 (2018), Art. ID 6870310, 11 pp. doi: 10.1155/2018/6870310.  Google Scholar  N. K. Vitanov, Z. D. Dimitrova and T. I. Ivanova, On solitary wave solutions of a class of nonlinear partial differential equations based on the function $\frac{1}{\cosh^n(\alpha x+\beta t)}$,, Appl. Math. Compu., 315 (2017), 372-380.  doi: 10.1016/j.amc.2017.07.064.  Google Scholar  G. Q. Xu, New types of exact solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation, Appl. Math. Comput., 217 (2011), 5967-5971.  doi: 10.1016/j.amc.2010.12.008.  Google Scholar  E. M. Zayed, A. G. Al-Nowehy and M. E. Elshater, Solitons and other solutions to nonlinear schrödinger equation with fourth-order dispersion and dual power law nonlinearity, Ric. Mat., 66 (2017), 531-552. Google Scholar The bifurcations of phase portraits of system (8) when $k_1\beta\gamma<0$ The bifurcations of phase portraits of system (8) when $\beta<0, k_1<0, \Delta_1>0$

Parameters: (a) $\gamma_0>\gamma>4k_1\beta>0.$ (b) $\gamma = \gamma_0 = \frac{4(m+1)^2k_1\beta}{2m+1}.$ (c) $\gamma>\gamma_0.$ The bifurcations of phase portraits of system (8) when $\beta>0, k_1<0, \Delta_1>0$

Parameters: (a) $\gamma_0<\gamma<4k_1\beta.$ (b) $\gamma = \gamma_0.$ (c) $\gamma<\gamma_0<0.$ The level curves of defined by $H(\psi, y) = 0$

Parameters: (a) $\beta<0, \Delta_1<0.$ (b) $k_1<0, \beta<0, \Delta_1>0, \gamma=\gamma_0>0, h_2=0.$ (c) $k_1<0, \beta<0, \Delta_1>0, \gamma>\gamma_0>0.$ (d) $k_1<0, \beta>0, \Delta_1>0, \gamma_0<\gamma<0.$ (e) $\beta\gamma k_1<0, \beta<0$ or $k_1=0, \beta<0, \gamma>0.$ (f) $\beta\gamma k_1<0, \beta>0.$ The changes of the level curves defined by $H(\psi, y) = h$ of system (8) The bifurcations of phase portraits of system (8) when $k_1\beta\gamma<0$

(a) $h_1<0<h_2.$ (b) $h_1<h_2 = 0.$ (c) $h_1<h_2<0.$ (d) $h_1 = h_2<0.$ The bifurcations of phase portraits of system (8) for $m = \frac1n, \beta<0$

(a) $\gamma<\gamma_0<0, h_2<0<h_1; \gamma = \gamma_0, 0 = h_2<h_1; \gamma_0<\gamma<4k_1\beta, 0<h_2<h_1.$ (b) $\gamma = 4k_1\beta, 0<h_1 = h_2.$

  Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107  Anupam Sen, T. Raja Sekhar. Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2641-2653. doi: 10.3934/cpaa.2020115  Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099  Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487  Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101  Hyungjin Huh. A special form of solution to half-wave equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021056  Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089  Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387  Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159  Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191  José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653  Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $L^2$-supercritical case. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298  Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067  Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106  Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129  Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623  Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307  Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1  Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118

2020 Impact Factor: 2.425