November  2020, 13(11): 3189-3204. doi: 10.3934/dcdss.2020114

Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

* Corresponding author: Maoan Han

Received  September 2018 Revised  December 2018 Published  October 2019

Fund Project: The corresponding author is supported by National Natural Science Foundation of China (11431008 and 11771296)

In this paper, we investigate the modified steady Swift-Hohenberg equation
$ \begin{equation} \begin{split} ku_{xxxx}+2ku_{xx}+\alpha u^{2}_{x}-\varepsilon u+u^{3} = 0,~~~~(1) \end{split} \end{equation} $
where
$ k>0 $
,
$ \alpha $
and
$ \varepsilon $
are constants. We obtain a homoclinic solution about the dominant system which will be proved to deform a reversible homoclinic solution approaching to a periodic solution of the whole equation with the aid of the Fourier series expansion method, the fixed point theorem, the reversibility and adjusting the phase shift. And the homoclinic solution approaching to a periodic solution of the equation are called generalized homoclinic solution.
Citation: Yixia Shi, Maoan Han. Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3189-3204. doi: 10.3934/dcdss.2020114
References:
[1]

E. BodenschatzW. Pesch and G. Ahlers, Recent developments in Rayleigh-Bénard convection, Annu. Rev. Fluid Mech., Annual Reviews, Palo Alto, CA, 32 (2000), 709-778.  doi: 10.1146/annurev.fluid.32.1.709.  Google Scholar

[2]

F. H. Busse, Non-linear properties of thermal convection, Rep. Progr. Phys., 41 (1978), 1929-1967.  doi: 10.1088/0034-4885/41/12/003.  Google Scholar

[3]

S. F. DengB. L. Guo and X. P. Li, Notes on homoclinic solutions of the steady Swift-Hohenberg equation, Chin. Ann. Math. Ser. B, 34 (2013), 917-920.  doi: 10.1007/s11401-013-0801-0.  Google Scholar

[4]

S. F. Deng, Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1647-1662.  doi: 10.3934/dcdss.2016068.  Google Scholar

[5]

S. F. Deng and B. L. Guo, Generalized homoclinic solutions of a coupled Schrödinger system under a small perturbation, J. Dyn. Diff. Equat., 24 (2012), 761-776.  doi: 10.1007/s10884-012-9274-1.  Google Scholar

[6]

S. F. Deng and X. P. Li, Generalized homoclinic solutions for the Swift-Hohenberg equation, J. Math. Anal. Appl., 390 (2012), 15-26.  doi: 10.1016/j.jmaa.2011.11.074.  Google Scholar

[7]

S. F. Deng and S.-M. Sun, Three-dimensional gravity-capillary waves on water-small surface tension case, Phys. D, 238 (2009), 1735-1751.  doi: 10.1016/j.physd.2009.05.012.  Google Scholar

[8]

S. F. Deng and S.-M. Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal., 42 (2010), 2721-2761.  doi: 10.1137/09077922X.  Google Scholar

[9]

S. F. DengB. L. Guo and T. C. Wang, Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation, Chin. Ann. Math. Ser. B, 35 (2014), 857-872.  doi: 10.1007/s11401-014-0867-3.  Google Scholar

[10]

A. DoelmanB. StandstedeA. Scheel and G. Schneider, Propagation of hexagonal patterns near onset, Eur. J. Appl. Math., 14 (2003), 85-110.  doi: 10.1017/S095679250200503X.  Google Scholar

[11]

E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders. With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Mathematics, 1741. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104102.  Google Scholar

[12]

E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rational Mech. Anal., 137 (1997), 227-304.  doi: 10.1007/s002050050029.  Google Scholar

[13]

E. Lombardi, Homoclinic orbits to small periodic orbits for a class of reversible systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1035-1054.  doi: 10.1017/S0308210500023246.  Google Scholar

[14]

D. Y. HsiehS. Tang and X. Wang, On hydrodynamic instabilities, chaos and phase transition, Acta Mech. Sinica, 12 (1996), 1-14.   Google Scholar

[15]

D. Y. Hsieh, Elemental mechanisms of hydrodynamic instabilities, Acta Mech. Sinica, 10 (1994), 193-202.  doi: 10.1007/BF02487607.  Google Scholar

[16]

H. Kielhöfer, Bifurcation Theory: An Introduction With Applications to PDEs, Springer, New York, 2003. Google Scholar

[17]

Y. Kuramoto, Diffusion-induced chaos in reaction systems, Supp. Prog. Theoret. Phys., 64 (1978), 346-367.  doi: 10.1143/PTPS.64.346.  Google Scholar

[18]

R. E. La QueyP. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ton mode, Phys. Rev. Lett., 34 (1975), 391-394.   Google Scholar

[19]

J. LegaJ. V. Moloney and A. C. Newell, Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73 (1994), 2978-2981.  doi: 10.1103/PhysRevLett.73.2978.  Google Scholar

[20]

A. Mielke and G. Schneider, Attractors for modulation equation on unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[21]

M. Polat, Global attractor for a modified Swift-Hohenberg equation, Comput. Math. Appl., 57 (2009), 62-66.  doi: 10.1016/j.camwa.2008.09.028.  Google Scholar

[22]

Q. Ouyang and H. L. Swinney, Onset and beyond turing pattern formation, Chemical Waves and Patterns, 10 (1995), 269-295.  doi: 10.1007/978-94-011-1156-0_8.  Google Scholar

[23]

S. H. Park and J. Y. Park, Pullback attractor for a non-autonomous modified Swift-Hohenberg equation, Comput. Math. Appl., 67 (2014), 542-548.  doi: 10.1016/j.camwa.2013.11.011.  Google Scholar

[24]

Y. X. Shi and S. F. Deng, Existence of generalized homoclinic solutions of a coupled KdV-type Boussinesq system under a small perturbation, J. Apple. Anal. Comput., 7 (2017), 392-410.   Google Scholar

[25]

T. Shlang and G. L. Sivashinsky, Irregular flow of a liquid film down a vertical column, J. Phys. France, 43 (1982), 459-466.   Google Scholar

[26]

G. I. Siivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astron., 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[27]

L. Y. SongY. D. Zhang and T. Ma, Global attractor of a modified Swift-Hohenberg equation in $H^k$ spaces, Non. Anal., 72 (2010), 183-191.  doi: 10.1016/j.na.2009.06.103.  Google Scholar

[28]

A. M. Soward, Bifurcation and stability of finite amplitude convection in a rotating layer, Phys. D., 14 (1985), 227-241.  doi: 10.1016/0167-2789(85)90181-2.  Google Scholar

[29]

J. Swift and P. C. Hohenberg, Hydrodynamics fluctuations at the convective instability, Phys. Rev. A, 15 (1977), 319-328.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[30]

W. Walter, Gewöhnliche Differentialgleichungen. Eine Einführung, Heidelberger Taschenbücher, Band 110. Springer-Verlag, Berlin-New York, 1972.  Google Scholar

[31]

Q. K. Xiao and H. J. Gao, Bifurcation analysis of a modified Swift-Hohenberg equation, Nonlinear Anal. Real World Appl., 11 (2010), 4451-4464.  doi: 10.1016/j.nonrwa.2010.05.028.  Google Scholar

[32]

L. Xu and Q. Z. Ma, Existence of the uniform attractors for a non-autonomous modified Swift-Hohenberg equation, Adv. in Difference Equations, 2015 (2015), 1-11. doi: 10.1186/s13662-015-0492-9.  Google Scholar

[33]

W. B. Zhang and J. Viñals, Pattern formation in weakly damped parametric surface waves, J. Fluid Mech., 336 (1997), 301-330.  doi: 10.1017/S0022112096004764.  Google Scholar

[34]

X. P. Zhao, B. Liu, P. Zhang, W. Y. Zhang and F. N. Liu, Fourier spectral method for the modified Swift-Hohenberg equation, Adv. Difference Equ., 2013 (2013), 19 pp. doi: 10.1186/1687-1847-2013-156.  Google Scholar

show all references

References:
[1]

E. BodenschatzW. Pesch and G. Ahlers, Recent developments in Rayleigh-Bénard convection, Annu. Rev. Fluid Mech., Annual Reviews, Palo Alto, CA, 32 (2000), 709-778.  doi: 10.1146/annurev.fluid.32.1.709.  Google Scholar

[2]

F. H. Busse, Non-linear properties of thermal convection, Rep. Progr. Phys., 41 (1978), 1929-1967.  doi: 10.1088/0034-4885/41/12/003.  Google Scholar

[3]

S. F. DengB. L. Guo and X. P. Li, Notes on homoclinic solutions of the steady Swift-Hohenberg equation, Chin. Ann. Math. Ser. B, 34 (2013), 917-920.  doi: 10.1007/s11401-013-0801-0.  Google Scholar

[4]

S. F. Deng, Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1647-1662.  doi: 10.3934/dcdss.2016068.  Google Scholar

[5]

S. F. Deng and B. L. Guo, Generalized homoclinic solutions of a coupled Schrödinger system under a small perturbation, J. Dyn. Diff. Equat., 24 (2012), 761-776.  doi: 10.1007/s10884-012-9274-1.  Google Scholar

[6]

S. F. Deng and X. P. Li, Generalized homoclinic solutions for the Swift-Hohenberg equation, J. Math. Anal. Appl., 390 (2012), 15-26.  doi: 10.1016/j.jmaa.2011.11.074.  Google Scholar

[7]

S. F. Deng and S.-M. Sun, Three-dimensional gravity-capillary waves on water-small surface tension case, Phys. D, 238 (2009), 1735-1751.  doi: 10.1016/j.physd.2009.05.012.  Google Scholar

[8]

S. F. Deng and S.-M. Sun, Exact theory of three-dimensional water waves at the critical speed, SIAM J. Math. Anal., 42 (2010), 2721-2761.  doi: 10.1137/09077922X.  Google Scholar

[9]

S. F. DengB. L. Guo and T. C. Wang, Existence of generalized heteroclinic solutions of the coupled Schrödinger system under a small perturbation, Chin. Ann. Math. Ser. B, 35 (2014), 857-872.  doi: 10.1007/s11401-014-0867-3.  Google Scholar

[10]

A. DoelmanB. StandstedeA. Scheel and G. Schneider, Propagation of hexagonal patterns near onset, Eur. J. Appl. Math., 14 (2003), 85-110.  doi: 10.1017/S095679250200503X.  Google Scholar

[11]

E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders. With Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Mathematics, 1741. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104102.  Google Scholar

[12]

E. Lombardi, Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves, Arch. Rational Mech. Anal., 137 (1997), 227-304.  doi: 10.1007/s002050050029.  Google Scholar

[13]

E. Lombardi, Homoclinic orbits to small periodic orbits for a class of reversible systems, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 1035-1054.  doi: 10.1017/S0308210500023246.  Google Scholar

[14]

D. Y. HsiehS. Tang and X. Wang, On hydrodynamic instabilities, chaos and phase transition, Acta Mech. Sinica, 12 (1996), 1-14.   Google Scholar

[15]

D. Y. Hsieh, Elemental mechanisms of hydrodynamic instabilities, Acta Mech. Sinica, 10 (1994), 193-202.  doi: 10.1007/BF02487607.  Google Scholar

[16]

H. Kielhöfer, Bifurcation Theory: An Introduction With Applications to PDEs, Springer, New York, 2003. Google Scholar

[17]

Y. Kuramoto, Diffusion-induced chaos in reaction systems, Supp. Prog. Theoret. Phys., 64 (1978), 346-367.  doi: 10.1143/PTPS.64.346.  Google Scholar

[18]

R. E. La QueyP. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ton mode, Phys. Rev. Lett., 34 (1975), 391-394.   Google Scholar

[19]

J. LegaJ. V. Moloney and A. C. Newell, Swift-Hohenberg equation for lasers, Phys. Rev. Lett., 73 (1994), 2978-2981.  doi: 10.1103/PhysRevLett.73.2978.  Google Scholar

[20]

A. Mielke and G. Schneider, Attractors for modulation equation on unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[21]

M. Polat, Global attractor for a modified Swift-Hohenberg equation, Comput. Math. Appl., 57 (2009), 62-66.  doi: 10.1016/j.camwa.2008.09.028.  Google Scholar

[22]

Q. Ouyang and H. L. Swinney, Onset and beyond turing pattern formation, Chemical Waves and Patterns, 10 (1995), 269-295.  doi: 10.1007/978-94-011-1156-0_8.  Google Scholar

[23]

S. H. Park and J. Y. Park, Pullback attractor for a non-autonomous modified Swift-Hohenberg equation, Comput. Math. Appl., 67 (2014), 542-548.  doi: 10.1016/j.camwa.2013.11.011.  Google Scholar

[24]

Y. X. Shi and S. F. Deng, Existence of generalized homoclinic solutions of a coupled KdV-type Boussinesq system under a small perturbation, J. Apple. Anal. Comput., 7 (2017), 392-410.   Google Scholar

[25]

T. Shlang and G. L. Sivashinsky, Irregular flow of a liquid film down a vertical column, J. Phys. France, 43 (1982), 459-466.   Google Scholar

[26]

G. I. Siivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations, Acta Astron., 4 (1977), 1177-1206.  doi: 10.1016/0094-5765(77)90096-0.  Google Scholar

[27]

L. Y. SongY. D. Zhang and T. Ma, Global attractor of a modified Swift-Hohenberg equation in $H^k$ spaces, Non. Anal., 72 (2010), 183-191.  doi: 10.1016/j.na.2009.06.103.  Google Scholar

[28]

A. M. Soward, Bifurcation and stability of finite amplitude convection in a rotating layer, Phys. D., 14 (1985), 227-241.  doi: 10.1016/0167-2789(85)90181-2.  Google Scholar

[29]

J. Swift and P. C. Hohenberg, Hydrodynamics fluctuations at the convective instability, Phys. Rev. A, 15 (1977), 319-328.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[30]

W. Walter, Gewöhnliche Differentialgleichungen. Eine Einführung, Heidelberger Taschenbücher, Band 110. Springer-Verlag, Berlin-New York, 1972.  Google Scholar

[31]

Q. K. Xiao and H. J. Gao, Bifurcation analysis of a modified Swift-Hohenberg equation, Nonlinear Anal. Real World Appl., 11 (2010), 4451-4464.  doi: 10.1016/j.nonrwa.2010.05.028.  Google Scholar

[32]

L. Xu and Q. Z. Ma, Existence of the uniform attractors for a non-autonomous modified Swift-Hohenberg equation, Adv. in Difference Equations, 2015 (2015), 1-11. doi: 10.1186/s13662-015-0492-9.  Google Scholar

[33]

W. B. Zhang and J. Viñals, Pattern formation in weakly damped parametric surface waves, J. Fluid Mech., 336 (1997), 301-330.  doi: 10.1017/S0022112096004764.  Google Scholar

[34]

X. P. Zhao, B. Liu, P. Zhang, W. Y. Zhang and F. N. Liu, Fourier spectral method for the modified Swift-Hohenberg equation, Adv. Difference Equ., 2013 (2013), 19 pp. doi: 10.1186/1687-1847-2013-156.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[15]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[16]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[17]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[18]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[19]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (138)
  • HTML views (373)
  • Cited by (0)

Other articles
by authors

[Back to Top]