Article Contents
Article Contents

# Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate

• * Corresponding author

Research was partially supported by NSFC grants (No.11471133, 11871235)

• In this paper, we study a SIRS epidemic model with a generalized nonmonotone incidence rate. It is shown that the model undergoes two different topological types of Bogdanov-Takens bifurcations, i.e., repelling and attracting Bogdanov-Takens bifurcations, for general parameter conditions. The approximate expressions for saddle-node, Homoclinic and Hopf bifurcation curves are calculated up to second order. Furthermore, some numerical simulations, including bifurcations diagrams and corresponding phase portraits, are given to illustrate the theoretical results.

Mathematics Subject Classification: Primary: 34C23, 34C25; Secondary: 92D25.

 Citation:

• Figure 1.  The curves of infection force $g(I)$. (a) Linear; (b) Saturated; (c) Nonmonotone

Figure 2.  The curves of infection force $g(I) = \frac{kI}{1+\beta I+\alpha I^2}$ with $\alpha = \frac{9}{2}$ and $k = 1$. (a) $\beta\geq 0$; (b) $-2\sqrt{\alpha}<\beta<0$

Figure 3.  A cusp of codimension 2 for system (9). (a) $m<m_*$; (b) $m>m_*$

Figure 4.  The repelling Bogdanov-Takens bifurcation diagram and phase portraits of system (11) with $p = 3$, $q = 2$, $m = -3$, $A = \frac{9}{4}$, $n = 4$. (a) Bifurcation diagram; (b) No equilibria when $(\lambda_1, \lambda_2) = (0.03, 0.25)$ lies in the region Ⅰ; (c) An unstable focus when $(\lambda_1, \lambda_2) = (0.03, 0.12097)$ lies in the region Ⅱ; (d) An unstable limit cycle when $(\lambda_1, \lambda_2) = (0.03, 0.1197)$ lies in the region Ⅲ; (e) An unstable homoclinic loop when $(\lambda_1, \lambda_2) = (0.03, 0.119045)$ lies on the curve HL; (f) A stable focus when $(\lambda_1, \lambda_2) = (0.03, 0.115)$ lies in the region Ⅳ

Figure 5.  The attracting Bogdanov-Takens bifurcation diagram and phase portraits of system (9) with $p = 3$, $q = 2$, $m = -\frac{3}{2}$, $A = \frac{36}{13}$, $n = \frac{13}{16}$. (a) Bifurcation diagram; (b) No equilibria when $(\lambda_1, \lambda_2) = (0.03, 0.11)$ lies in the region Ⅰ; (c) A stable focus when $(\lambda_1, \lambda_2) = (0.03, 0.098)$ lies in the region Ⅱ; (d) A stable limit cycle when $(\lambda_1, \lambda_2) = (0.03, 0.096)$ lies in the region Ⅲ; (e) A stable homoclinic loop when $(\lambda_1, \lambda_2) = (0.03, 0.09342)$ lies on the curve HL; (f) An unstable focus when $(\lambda_1, \lambda_2) = (0.03, 0.09)$ lies in the region Ⅳ

•  [1] M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75-96.  doi: 10.1016/j.mbs.2004.01.003. [2] M. E. Alexander and S. M. Moghadas, Bifurcations analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.  doi: 10.1137/040604947. [3] R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet., 1 (1981), 373-388. [4] R. I. Bogdanov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Math. Soviet., 1 (1981), 389-421. [5] V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.  doi: 10.1016/0025-5564(78)90006-8. [6] V. Capasso, E. Crosso and G. Serio, I modelli matematici nella indagine epidemiologica. I. Applicazione all'epidemia di colera verificatasi in Bari nel 1973, Annali Sclavo, 19 (1977), 193-208. [7] W. R. Derrick and P. van den Driessche, A disease transmission model in a nonconstant population, J. Math. Biol., 31 (1993), 495-512.  doi: 10.1007/BF00173889. [8] H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.  doi: 10.1007/BF00160539. [9] J. C. Huang, Y. J. Gong and J. Chen, Muliple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350164, 24 pp. doi: 10.1142/S0218127413501642. [10] J. C. Huang, Y. J. Gong and S. G. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.  doi: 10.3934/dcdsb.2013.18.2101. [11] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721. [12] Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type Ⅲ functional response, J. Dynam. Differential Equations, 20 (2008), 535-571.  doi: 10.1007/s10884-008-9102-9. [13] X. P. Li, J. L. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. P. Zhu, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 785-807.  doi: 10.3934/dcdsb.2018043. [14] J. Li, Y. L. Zhao and H. P. Zhu, Bifurcation of an SIS model with nonlinear contact rate, J. Math. Anal. Appl., 432 (2015), 1119-1138.  doi: 10.1016/j.jmaa.2015.07.001. [15] W. M. Liu, H. W. Hetchote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162. [16] W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.  doi: 10.1007/BF00276956. [17] J. L. Ren and L. P. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, Journal of Nonlinear Science, 26 (2016), 1895-1931.  doi: 10.1007/s00332-016-9323-8. [18] J. L. Ren, L. P. Yu and S. Siegmind, Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response, Nonlinear Dynamics, 90 (2017), 19-41.  doi: 10.1007/s11071-017-3643-6. [19] S. G. Ruan and W. D. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.  doi: 10.1016/S0022-0396(02)00089-X. [20] F. Takens, Forced oscillations and bifurcations, Applications of Global Analysis, I, Math. Inst. Rijksuniv. Utrecht, Utrecht, 3 (1974), 1-59. [21] Y. L. Tang, D. Q. Huang, S. G. Ruan and W. N. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.  doi: 10.1137/070700966. [22] D. M. Xiao and S. G. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.  doi: 10.1016/j.mbs.2006.09.025. [23] D. M. Xiao and Y. G. Zhou, Qualitative analysis of an epidemic model, Can. Appl. Math. Quart., 14 (2006), 469-492. [24] Y. G. Zhou, D. M. Xiao and Y. L. Li, Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007), 1903-1915.  doi: 10.1016/j.chaos.2006.01.002.

Figures(5)