
-
Previous Article
Dirichlet problem for a diffusive logistic population model with two delays
- DCDS-S Home
- This Issue
-
Next Article
Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory
Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate
School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China |
In this paper, we study a SIRS epidemic model with a generalized nonmonotone incidence rate. It is shown that the model undergoes two different topological types of Bogdanov-Takens bifurcations, i.e., repelling and attracting Bogdanov-Takens bifurcations, for general parameter conditions. The approximate expressions for saddle-node, Homoclinic and Hopf bifurcation curves are calculated up to second order. Furthermore, some numerical simulations, including bifurcations diagrams and corresponding phase portraits, are given to illustrate the theoretical results.
References:
[1] |
M. E. Alexander and S. M. Moghadas,
Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75-96.
doi: 10.1016/j.mbs.2004.01.003. |
[2] |
M. E. Alexander and S. M. Moghadas,
Bifurcations analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.
doi: 10.1137/040604947. |
[3] |
R. I. Bogdanov,
Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet., 1 (1981), 373-388.
|
[4] |
R. I. Bogdanov,
Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Math. Soviet., 1 (1981), 389-421.
|
[5] |
V. Capasso and G. Serio,
A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[6] |
V. Capasso, E. Crosso and G. Serio,
I modelli matematici nella indagine epidemiologica. I. Applicazione all'epidemia di colera verificatasi in Bari nel 1973, Annali Sclavo, 19 (1977), 193-208.
|
[7] |
W. R. Derrick and P. van den Driessche,
A disease transmission model in a nonconstant population, J. Math. Biol., 31 (1993), 495-512.
doi: 10.1007/BF00173889. |
[8] |
H. W. Hethcote and P. van den Driessche,
Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[9] |
J. C. Huang, Y. J. Gong and J. Chen, Muliple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350164, 24 pp.
doi: 10.1142/S0218127413501642. |
[10] |
J. C. Huang, Y. J. Gong and S. G. Ruan,
Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
doi: 10.3934/dcdsb.2013.18.2101. |
[11] |
W. O. Kermack and A. G. McKendrick,
A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721.
|
[12] |
Y. Lamontagne, C. Coutu and C. Rousseau,
Bifurcation analysis of a predator-prey system with generalized Holling type Ⅲ functional response, J. Dynam. Differential Equations, 20 (2008), 535-571.
doi: 10.1007/s10884-008-9102-9. |
[13] |
X. P. Li, J. L. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. P. Zhu,
How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 785-807.
doi: 10.3934/dcdsb.2018043. |
[14] |
J. Li, Y. L. Zhao and H. P. Zhu,
Bifurcation of an SIS model with nonlinear contact rate, J. Math. Anal. Appl., 432 (2015), 1119-1138.
doi: 10.1016/j.jmaa.2015.07.001. |
[15] |
W. M. Liu, H. W. Hetchote and S. A. Levin,
Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.
doi: 10.1007/BF00277162. |
[16] |
W. M. Liu, S. A. Levin and Y. Iwasa,
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.
doi: 10.1007/BF00276956. |
[17] |
J. L. Ren and L. P. Yu,
Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, Journal of Nonlinear Science, 26 (2016), 1895-1931.
doi: 10.1007/s00332-016-9323-8. |
[18] |
J. L. Ren, L. P. Yu and S. Siegmind,
Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response, Nonlinear Dynamics, 90 (2017), 19-41.
doi: 10.1007/s11071-017-3643-6. |
[19] |
S. G. Ruan and W. D. Wang,
Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.
doi: 10.1016/S0022-0396(02)00089-X. |
[20] |
F. Takens,
Forced oscillations and bifurcations, Applications of Global Analysis, I, Math. Inst. Rijksuniv. Utrecht, Utrecht, 3 (1974), 1-59.
|
[21] |
Y. L. Tang, D. Q. Huang, S. G. Ruan and W. N. Zhang,
Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.
doi: 10.1137/070700966. |
[22] |
D. M. Xiao and S. G. Ruan,
Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.
doi: 10.1016/j.mbs.2006.09.025. |
[23] |
D. M. Xiao and Y. G. Zhou,
Qualitative analysis of an epidemic model, Can. Appl. Math. Quart., 14 (2006), 469-492.
|
[24] |
Y. G. Zhou, D. M. Xiao and Y. L. Li,
Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007), 1903-1915.
doi: 10.1016/j.chaos.2006.01.002. |
show all references
References:
[1] |
M. E. Alexander and S. M. Moghadas,
Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75-96.
doi: 10.1016/j.mbs.2004.01.003. |
[2] |
M. E. Alexander and S. M. Moghadas,
Bifurcations analysis of SIRS epidemic model with generalized incidence, SIAM J. Appl. Math., 65 (2005), 1794-1816.
doi: 10.1137/040604947. |
[3] |
R. I. Bogdanov,
Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Math. Soviet., 1 (1981), 373-388.
|
[4] |
R. I. Bogdanov,
Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Math. Soviet., 1 (1981), 389-421.
|
[5] |
V. Capasso and G. Serio,
A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.
doi: 10.1016/0025-5564(78)90006-8. |
[6] |
V. Capasso, E. Crosso and G. Serio,
I modelli matematici nella indagine epidemiologica. I. Applicazione all'epidemia di colera verificatasi in Bari nel 1973, Annali Sclavo, 19 (1977), 193-208.
|
[7] |
W. R. Derrick and P. van den Driessche,
A disease transmission model in a nonconstant population, J. Math. Biol., 31 (1993), 495-512.
doi: 10.1007/BF00173889. |
[8] |
H. W. Hethcote and P. van den Driessche,
Some epidemiological models with nonlinear incidence, J. Math. Biol., 29 (1991), 271-287.
doi: 10.1007/BF00160539. |
[9] |
J. C. Huang, Y. J. Gong and J. Chen, Muliple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350164, 24 pp.
doi: 10.1142/S0218127413501642. |
[10] |
J. C. Huang, Y. J. Gong and S. G. Ruan,
Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
doi: 10.3934/dcdsb.2013.18.2101. |
[11] |
W. O. Kermack and A. G. McKendrick,
A contribution to the mathematical theory of epidemics, Proc. Roal Soc. Lond., 115 (1927), 700-721.
|
[12] |
Y. Lamontagne, C. Coutu and C. Rousseau,
Bifurcation analysis of a predator-prey system with generalized Holling type Ⅲ functional response, J. Dynam. Differential Equations, 20 (2008), 535-571.
doi: 10.1007/s10884-008-9102-9. |
[13] |
X. P. Li, J. L. Ren, S. A. Campbell, G. S. K. Wolkowicz and H. P. Zhu,
How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 785-807.
doi: 10.3934/dcdsb.2018043. |
[14] |
J. Li, Y. L. Zhao and H. P. Zhu,
Bifurcation of an SIS model with nonlinear contact rate, J. Math. Anal. Appl., 432 (2015), 1119-1138.
doi: 10.1016/j.jmaa.2015.07.001. |
[15] |
W. M. Liu, H. W. Hetchote and S. A. Levin,
Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.
doi: 10.1007/BF00277162. |
[16] |
W. M. Liu, S. A. Levin and Y. Iwasa,
Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.
doi: 10.1007/BF00276956. |
[17] |
J. L. Ren and L. P. Yu,
Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, Journal of Nonlinear Science, 26 (2016), 1895-1931.
doi: 10.1007/s00332-016-9323-8. |
[18] |
J. L. Ren, L. P. Yu and S. Siegmind,
Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response, Nonlinear Dynamics, 90 (2017), 19-41.
doi: 10.1007/s11071-017-3643-6. |
[19] |
S. G. Ruan and W. D. Wang,
Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163.
doi: 10.1016/S0022-0396(02)00089-X. |
[20] |
F. Takens,
Forced oscillations and bifurcations, Applications of Global Analysis, I, Math. Inst. Rijksuniv. Utrecht, Utrecht, 3 (1974), 1-59.
|
[21] |
Y. L. Tang, D. Q. Huang, S. G. Ruan and W. N. Zhang,
Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.
doi: 10.1137/070700966. |
[22] |
D. M. Xiao and S. G. Ruan,
Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.
doi: 10.1016/j.mbs.2006.09.025. |
[23] |
D. M. Xiao and Y. G. Zhou,
Qualitative analysis of an epidemic model, Can. Appl. Math. Quart., 14 (2006), 469-492.
|
[24] |
Y. G. Zhou, D. M. Xiao and Y. L. Li,
Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action, Chaos Solitons Fractals, 32 (2007), 1903-1915.
doi: 10.1016/j.chaos.2006.01.002. |




[1] |
Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130 |
[2] |
Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041 |
[3] |
Yoichi Enatsu, Yukihiko Nakata. Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences & Engineering, 2014, 11 (4) : 785-805. doi: 10.3934/mbe.2014.11.785 |
[4] |
Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022031 |
[5] |
Qin Pan, Jicai Huang, Qihua Huang. Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3533-3561. doi: 10.3934/dcdsb.2021195 |
[6] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
[7] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[8] |
Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93 |
[9] |
Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 |
[10] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[11] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[12] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[13] |
Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399 |
[14] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[15] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[16] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[17] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[18] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[19] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[20] |
Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]