[1]
|
A. Bourgeois, Spreading Speeds and Travelling Waves in Intergrodifference Equations with Overcompensatory Dynamics, Master's Thesis, University of Ottawa, 2016, URL http://hdl.handle.net/10393/34578.
|
[2]
|
A. Bourgeois, V. LeBlanc and F. Lutscher, Spreading phenomena in integrodifference equations with non-monotone growth functions, SIAM Journal of Applied Mathematics, 78 (2018), 2950-2972.
doi: 10.1137/17M1126102.
|
[3]
|
R. M. Coutinho, W. A. C. Godoy and R. A. Kraenkel, Integrodifference model for blowfly invasion, Theoretical Ecology, 5 (2012), 363-371.
doi: 10.1007/s12080-012-0157-1.
|
[4]
|
A. S. Dagbovie and J. A. Sherratt, Absolute stability and dynamical stabilisation in predator-prey systems, Journal of Mathematical Biology, 68 (2014), 1403-1421.
doi: 10.1007/s00285-013-0672-8.
|
[5]
|
G. de Vries, T. Hillen, M. Lewis, J. Müller and B. Schönfisch, A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods, Mathematical Modeling and Computation, 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2006.
doi: 10.1137/1.9780898718256.
|
[6]
|
R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences, Vol. 20. Springer-Verlag, New York-Heidelberg, 1977.
|
[7]
|
A. Ducrot, Spatial propagation for a two component reaction-diffusion system arising in population dynamics, Journal of Differential Equations, 260 (2016), 8316-8357.
doi: 10.1016/j.jde.2016.02.023.
|
[8]
|
W. F. Fagan and J. G. Bishop, Trophic interactions during primary succession: Herbivores slow a plant reinvasion at mount st. helens, The American Naturalist, 155 (2000), 238-251.
doi: 10.1086/303320.
|
[9]
|
P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Archive for Rational Mechanics and Analysis, 65 (1977), 335-361.
doi: 10.1007/BF00250432.
|
[10]
|
A. Gharouni, M. A. Barbeau, A. Locke, L. Wang and J. Watmough, Sensitivity of invasion speed to dispersal and demography: An application of spreading speed theory to the green crab invasion on the northwest atlantic coast, Marine Ecology Progress Series, 541 (2015), 135-150.
doi: 10.3354/meps11508.
|
[11]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[12]
|
L. N. Howard and N. Kopell, Slowly varying waves and shock structures in reaction-diffusion equations, Studies in Applied Mathematics, 56 (1976/77), 95-145.
doi: 10.1002/sapm197756295.
|
[13]
|
S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM Journal on Mathematical Analysis, 40 (2008), 776-789.
doi: 10.1137/070703016.
|
[14]
|
M. Iida, R. Lui and H. Ninomiya, Stacked fronts for cooperative systems with equal diffusion coefficients, SIAM Journal on Mathematical Analysis, 43 (2011), 1369-1389.
doi: 10.1137/100792846.
|
[15]
|
N. Kopell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Studies in Applied Mathematics, 52 (1973), 291-328.
doi: 10.1002/sapm1973524291.
|
[16]
|
M. Kot, Discrete-time traveling waves: Ecological examples, Journal of Mathematical Biology, 30 (1992), 413-436.
doi: 10.1007/BF00173295.
|
[17]
|
M. Kot, M. A. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.
doi: 10.2307/2265698.
|
[18]
|
M. Kot and W. Schaffer, Discrete-time growth-dispersal models, Mathematical Biosciences, 80 (1986), 109-136.
doi: 10.1016/0025-5564(86)90069-6.
|
[19]
|
M. A. Lewis, S. V. Petrovskii and J. R. Potts, The Mathematics Behind Biological Invasions, Interdisciplinary Applied Mathematics, 44. Springer, 2016.
doi: 10.1007/978-3-319-32043-4.
|
[20]
|
B. T. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, Journal of Mathematical Biology, 58 (2009), 323-338.
doi: 10.1007/s00285-008-0175-1.
|
[21]
|
G. Lin, Traveling wave solutions for integro-difference systems, Journal of Differential Equations, 258 (2015), 2908-2940.
doi: 10.1016/j.jde.2014.12.030.
|
[22]
|
H. Malchow and S. V. Petrovskii, Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Mathematical modelling of nonlinear systems, Mathematical and Computer Modelling, 36 (2002), 307-319.
doi: 10.1016/S0895-7177(02)00127-9.
|
[23]
|
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation, Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2008.
|
[24]
|
N. G. Marculis and R. Lui, Modelling the biological invasion of Carcinus maenas (the European green crab), Journal of Biological Dynamics, 10 (2016), 140-163.
doi: 10.1080/17513758.2015.1115563.
|
[25]
|
R. M. May, Biological populations obeying difference equations: Stable points, stable cycles, and chaos, Journal of Theoretical Biology, 51 (1975), 511-524.
doi: 10.1016/0022-5193(75)90078-8.
|
[26]
|
M. G. Neubert, M. Kot and M. A. Lewis, Dispersal and pattern formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43.
doi: 10.1006/tpbi.1995.1020.
|
[27]
|
M. R. Owen and M. A. Lewis, How predation can slow, stop or reverse a prey invasion, Bulletin of Mathematical Biology, 63 (2001), 665-684.
doi: 10.1006/bulm.2001.0239.
|
[28]
|
S. X. Pan, Invasion speed of a predator-prey system, Applied Mathematics Letters, 74 (2017), 46-51.
doi: 10.1016/j.aml.2017.05.014.
|
[29]
|
S. X. Pan and G. Lin, Propagation of second order integrodifference equations with local monotonicity, Nonlinear Analysis: Real World Applications, 12 (2011), 535-544.
doi: 10.1016/j.nonrwa.2010.06.038.
|
[30]
|
S. V. Petrovskii and H. Malchow, A minimal model of pattern formation in a prey-predator system, Mathematical and Computer Modelling, 29 (1999), 49-63.
doi: 10.1016/S0895-7177(99)00070-9.
|
[31]
|
S. V. Petrovskii and H. Malchow, Critical phenomena in plankton communities: KISS model revisited, Nonlinear Analysis: Real World Applications, 1 (2000), 37-51.
doi: 10.1016/S0362-546X(99)00392-2.
|
[32]
|
J.-M. Roquejoffre, D. Terman and V. A. Volpert, Global stability of traveling fronts and convergence towards stacked families of waves in monotone parabolic systems, SIAM Journal on Mathematical Analysis, 27 (1996), 1261-1269.
doi: 10.1137/S0036141094267522.
|
[33]
|
J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM Journal on Applied Mathematics, 76 (2016), 291-313.
doi: 10.1137/15M1027991.
|
[34]
|
J. A. Sherratt, A. S. Dagbovie and F. M. Hilker, A mathematical biologist's guide to convective and absolute stability, Bulletin of Mathematical Biology, 76 (2014), 1-26.
doi: 10.1007/s11538-013-9911-9.
|
[35]
|
H. F. Weinberger, Asymptotic behavior of a model in population genetics, Nonlinear Partial Differential Equations and Applications, Lecture Notes in Math., Springer, Berlin, 648 (1978), 47-96.
|
[36]
|
H. F. Weinberger, Long-time behavior of a class of biological models, SIAM Journal on Mathematical Analysis, 13 (1982), 353-396.
doi: 10.1137/0513028.
|
[37]
|
H. Weinberger and X.-Q. Zhao, An extension of the formula for spreading speeds, Mathematical Biosciences and Engineering, 7 (2010), 187-194.
doi: 10.3934/mbe.2010.7.187.
|
[38]
|
T. S. Yi and X. F. Zou, Asymptotic behavior, spreading speeds and traveling waves of nonmonotone dynamical systems, SIAM Journal on Mathematical Analysis, 47 (2015), 3005-3034.
doi: 10.1137/14095412X.
|
[39]
|
Z.-X. Yu and R. Yuan, Properties of traveling waves for integrodifference equation with nonmonotone growth functions, Zeitschrift fuer Angewandte Mathematik und Physik, 63 (2012), 249-259.
doi: 10.1007/s00033-011-0170-z.
|