• Previous Article
    A multi-stage method for joint pricing and inventory model with promotion constrains
  • DCDS-S Home
  • This Issue
  • Next Article
    On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions
doi: 10.3934/dcdss.2020119

Minimum energy compensation for discrete delayed systems with disturbances

Faculty of Sciences Ain Chock, University Hassan II, B.P.5366, Maȃrif, Casablanca, Morocco

* Corresponding author

Received  October 2018 Revised  January 2019 Published  October 2019

This work is devoted to the remediability problem for a class of discrete delayed systems. We investigate the possibility of reducing the disturbance effect with a convenient choice of the control operator. We give the main properties and characterization results of this concept, according to the delay and the observation. Then, under an appropriate hypothesis, we demonstrate how to find the optimal control which ensures the compensation of a disturbance measured through the observation (measurements, signals, ...). The discrete version of the wave equation, as well as the usual actuators and sensors, are examined. Numerical results are also presented.

Citation: Salma Souhaile, Larbi Afifi. Minimum energy compensation for discrete delayed systems with disturbances. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020119
References:
[1]

L. AfifiM. BahadiA. Chafiai and A. El Mizane, Asymptotic compensation in discrete distributed systems: Analysis, approximations and simulations, Applied Mathematical Sciences, 2 (2008), 99-137.   Google Scholar

[2]

L. Afifi and A. El Jai, Systémes Distribués Perturbés, Presses Universitaires de Perpignan (frensh), 2015. Google Scholar

[3]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, 8. Springer-Verlag, Berlin-New York, 1978.  Google Scholar

[4]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[5]

A. El Jaï and A. J. Pritchard, Sensors and actuators in distributed systems, International Journal of Control, 46 (1987), 1139-1153.  doi: 10.1080/00207178708933956.  Google Scholar

[6]

E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Systems & Control: Foundations & Applications, Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-09393-2.  Google Scholar

[7]

S. Hadd and A. Idrissi, Regular linear systems governed by systems with state, input and output delays, IMA Journal of Mathematical Control and Information, 22 (2005), 423-439.  doi: 10.1093/imamci/dni035.  Google Scholar

[8]

S. Hadd, An evolution equation approach to nonautonomous linear systems with state, input, and output delays, SIAM Journal on Control and Optimization, 45 (2006), 246-272.  doi: 10.1137/040612178.  Google Scholar

[9]

S. Hadd and Q.-C. Zhong, On feedback stabilizability of linear systems with state and input delays in Banach spaces, IEEE Transactions on Automatic Control, 54 (2009), 438-451.  doi: 10.1109/TAC.2009.2012969.  Google Scholar

[10]

H. Shi, G. M. Xie and W. G. Luo, Controllability of linear discrete time systems with both delayed states and delayed inputs, Abstract and Applied Analysis, (2013), Art. ID 975461, 5 pp. doi: 10.1155/2013/975461.  Google Scholar

[11]

V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, 34. American Mathematical Society, Providence, RI, 1990. doi: 10.1090/surv/034.  Google Scholar

[12]

H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New York-London-Sydney, 1972.  Google Scholar

[13]

J.-L. Lions, Contrȏle Optimal de Systémes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, Gauthier-Villars, Paris, 1968.  Google Scholar

[14]

M. Naim, F. Lahmidi, A. Namir and M. Rachik, On the output controllability of positive discrete linear delay systems, Abstract and Applied Analysis, (2017), Art. ID 3651271, 12 pp. doi: 10.1155/2017/3651271.  Google Scholar

[15]

V. N. Phat and T. C. Dieu, Constrained controllability of linear discrete nonstationary systems in banach spaces, SIAM J. Control Optim., 30 (1992), 1311-1318.  doi: 10.1137/0330069.  Google Scholar

[16]

V. N. Phat, Controllability of discrete-time systems with multiple delays on controls and states, International Journal of Control, 49 (1989), 1645-1654.  doi: 10.1080/00207178908559731.  Google Scholar

[17]

R. Rabah and M. Malabare, Structure at infinity revisited for delay systems, IEEE-SMC-IMACS Multiconference, Symposium on Robotics and Cybernetics (CESA'96). Symposium in Modelling, Analysis and Simulation, (1996), 87–90. https://hal.archives-ouvertes.fr/hal-01466183 Google Scholar

[18]

R. Rabah and M. Malabare, Weak structure at infinity and row-by-row decoupling for linear delay systems, Kybernetika, 40 (2004), 181-195.   Google Scholar

[19]

M. RachikM. Lhous and A. Tridane, Controllability and Optimal Control Problem for Linear Time-varying Discrete Distributed Systems, Systems Analysis Modelling Simulation, 43 (2003), 137-164.   Google Scholar

[20]

J.-P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.  Google Scholar

[21]

S. Souhaile and L. Afifi, Cheap compensation in disturbed linear dynamical systems with multi-input delays, International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-018-00505-6. doi: 10.1007/s40435-018-00505-6.  Google Scholar

[22]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1]

L. AfifiM. BahadiA. Chafiai and A. El Mizane, Asymptotic compensation in discrete distributed systems: Analysis, approximations and simulations, Applied Mathematical Sciences, 2 (2008), 99-137.   Google Scholar

[2]

L. Afifi and A. El Jai, Systémes Distribués Perturbés, Presses Universitaires de Perpignan (frensh), 2015. Google Scholar

[3]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, 8. Springer-Verlag, Berlin-New York, 1978.  Google Scholar

[4]

O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2.  Google Scholar

[5]

A. El Jaï and A. J. Pritchard, Sensors and actuators in distributed systems, International Journal of Control, 46 (1987), 1139-1153.  doi: 10.1080/00207178708933956.  Google Scholar

[6]

E. Fridman, Introduction to Time-Delay Systems: Analysis and Control, Systems & Control: Foundations & Applications, Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-09393-2.  Google Scholar

[7]

S. Hadd and A. Idrissi, Regular linear systems governed by systems with state, input and output delays, IMA Journal of Mathematical Control and Information, 22 (2005), 423-439.  doi: 10.1093/imamci/dni035.  Google Scholar

[8]

S. Hadd, An evolution equation approach to nonautonomous linear systems with state, input, and output delays, SIAM Journal on Control and Optimization, 45 (2006), 246-272.  doi: 10.1137/040612178.  Google Scholar

[9]

S. Hadd and Q.-C. Zhong, On feedback stabilizability of linear systems with state and input delays in Banach spaces, IEEE Transactions on Automatic Control, 54 (2009), 438-451.  doi: 10.1109/TAC.2009.2012969.  Google Scholar

[10]

H. Shi, G. M. Xie and W. G. Luo, Controllability of linear discrete time systems with both delayed states and delayed inputs, Abstract and Applied Analysis, (2013), Art. ID 975461, 5 pp. doi: 10.1155/2013/975461.  Google Scholar

[11]

V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, 34. American Mathematical Society, Providence, RI, 1990. doi: 10.1090/surv/034.  Google Scholar

[12]

H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New York-London-Sydney, 1972.  Google Scholar

[13]

J.-L. Lions, Contrȏle Optimal de Systémes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, Gauthier-Villars, Paris, 1968.  Google Scholar

[14]

M. Naim, F. Lahmidi, A. Namir and M. Rachik, On the output controllability of positive discrete linear delay systems, Abstract and Applied Analysis, (2017), Art. ID 3651271, 12 pp. doi: 10.1155/2017/3651271.  Google Scholar

[15]

V. N. Phat and T. C. Dieu, Constrained controllability of linear discrete nonstationary systems in banach spaces, SIAM J. Control Optim., 30 (1992), 1311-1318.  doi: 10.1137/0330069.  Google Scholar

[16]

V. N. Phat, Controllability of discrete-time systems with multiple delays on controls and states, International Journal of Control, 49 (1989), 1645-1654.  doi: 10.1080/00207178908559731.  Google Scholar

[17]

R. Rabah and M. Malabare, Structure at infinity revisited for delay systems, IEEE-SMC-IMACS Multiconference, Symposium on Robotics and Cybernetics (CESA'96). Symposium in Modelling, Analysis and Simulation, (1996), 87–90. https://hal.archives-ouvertes.fr/hal-01466183 Google Scholar

[18]

R. Rabah and M. Malabare, Weak structure at infinity and row-by-row decoupling for linear delay systems, Kybernetika, 40 (2004), 181-195.   Google Scholar

[19]

M. RachikM. Lhous and A. Tridane, Controllability and Optimal Control Problem for Linear Time-varying Discrete Distributed Systems, Systems Analysis Modelling Simulation, 43 (2003), 137-164.   Google Scholar

[20]

J.-P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.  Google Scholar

[21]

S. Souhaile and L. Afifi, Cheap compensation in disturbed linear dynamical systems with multi-input delays, International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-018-00505-6. doi: 10.1007/s40435-018-00505-6.  Google Scholar

[22]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

Figure 1.  Control observation for $ N = 10 $
Figure 2.  Control observation for $ N = 20 $
[1]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[2]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[3]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[4]

Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91

[5]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks & Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[6]

Chiun-Chuan Chen, Ting-Yang Hsiao, Li-Chang Hung. Discrete N-barrier maximum principle for a lattice dynamical system arising in competition models. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 153-187. doi: 10.3934/dcds.2020007

[7]

Jorge Duarte, Cristina Januário, Nuno Martins. A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences & Engineering, 2017, 14 (4) : 821-842. doi: 10.3934/mbe.2017045

[8]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[9]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[10]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[11]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[12]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[13]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[14]

B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537

[15]

Jean-Luc Chabert, Ai-Hua Fan, Youssef Fares. Minimal dynamical systems on a discrete valuation domain. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 777-795. doi: 10.3934/dcds.2009.25.777

[16]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[17]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[18]

Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929

[19]

Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039

[20]

Jacobo Pejsachowicz, Robert Skiba. Topology and homoclinic trajectories of discrete dynamical systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1077-1094. doi: 10.3934/dcdss.2013.6.1077

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]