There has, to date, been much focus on when a Hamiltonian operator or symmetry results in a first integral for Hamiltonian systems. Very little emphasis has been given to the inverse problem, viz. which operator arises from a first integral of a Hamiltonian system. In this note, we consider this problem with examples mainly taken from economic growth theory. We also provide an example from classical mechanics.
Citation: |
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1.![]() ![]() ![]() |
[2] |
M. V. Berry and P. Shukla, Classical dynamics with curl forces, and motion driven by time-dependent flux, J. Phys. A: Math. Theor., 45 (2012), 305201, 18 pp.
doi: 10.1088/1751-8113/45/30/305201.![]() ![]() ![]() |
[3] |
V. Dorodnitsyn and R. Kozlov, Invariance and first integrals of continuous and discrete Hamiltonian equations, Journal of Engineering Mathematics, 66 (2010), 253-270.
doi: 10.1007/s10665-009-9312-0.![]() ![]() ![]() |
[4] |
B. U. Haq and I. Naeem, First integrals and exact solutions of some compartmental disease models, Zeitschrift für Naturforschung A, 74 (2019), 293-304.
![]() |
[5] |
B. U. Haq and I. Naeem, First integrals and analytical solutions of some dynamical systems, Nonlinear Dynamics, 95 (2019), 1747-1765.
![]() |
[6] |
V. V. Kozlov, Integrability and nonintegrability in Hamiltonian mechanics, Russ. Math. Surveys, 38 (1983), 3-67,240.
![]() ![]() |
[7] |
T. Levi-Civita, Interpretazione gruppale degli integrali di un sistema canonico, Rend. Acc. Lincei, s. 3$^a$, sem. 2$^o$ sem., 7 (1899), 235-238.
![]() |
[8] |
F. M. Mahomed and J. A. G. Roberts, Characterization of Hamiltonian symmetries and their first integrals., International Journal of Non-Linear Mechanics, 74 (2015), 84-91.
![]() |
[9] |
K. S. Mahomed and R. J. Moitsheki, First integrals of generalized Ermakov systems via the Hamiltonian formulation, International Journal of Modern Physics B, 30 (2016), 1640019, 12 pp.
doi: 10.1142/S0217979216400191.![]() ![]() ![]() |
[10] |
J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4.![]() ![]() ![]() |
[11] |
R. Naz, F. M. Mahomed and A. Chaudhry, A partial Hamiltonian approach for current value Hamiltonian systems, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3600-3610.
doi: 10.1016/j.cnsns.2014.03.023.![]() ![]() ![]() |
[12] |
R. Naz, F. M. Mahomed and A. Chaudhry, A partial Lagrangian method for dynamical systems, Nonlinear Dynamics, 84 (2016), 1783-1794.
doi: 10.1007/s11071-016-2605-8.![]() ![]() ![]() |
[13] |
R. Naz, A. Chaudhry and F. M. Mahomed, Closed-form solutions for the Lucas-Uzawa model of economic growth via the partial Hamiltonian approach, Communications in Nonlinear Science and Numerical Simulation, 30 (2016), 299-306.
doi: 10.1016/j.cnsns.2015.06.033.![]() ![]() ![]() |
[14] |
R. Naz and A. Chaudhry, Comparison of closed-form solutions for the Lucas-Uzawa model via the partial Hamiltonian approach and the classical approach, Mathematical Modelling and Analysis, 22 (2017), 464-483.
doi: 10.3846/13926292.2017.1323035.![]() ![]() ![]() |
[15] |
R. Naz and A. Chaudhry, Closed-form solutions of Lucas-Uzawa model with externalities via partial Hamiltonian approach, Computational and Applied Mathematics, 37 (2018), 5146-5161.
doi: 10.1007/s40314-018-0622-6.![]() ![]() ![]() |
[16] |
R. Naz and I. Naeem, The artificial Hamiltonian, first integrals, and closed-form solutions of dynamical systems for epidemics, Zeitschrift für Naturforschung A, 73 (2018), 323–330.
![]() |
[17] |
R. Naz, The applications of the partial Hamiltonian approach to mechanics and other areas, International Journal of Non-linear Mechanics, 86 (2016), 1-6.
![]() |
[18] |
R. Naz and F. M. Mahomed, Characterization of partial Hamiltonian operators and related first integrals, Discrete & Continuous Dynamical Systems-Series S (DCDS-S), 11 (2018), 723-734.
doi: 10.3934/dcdss.2018045.![]() ![]() ![]() |
[19] |
R. Naz, Characterization of approximate Partial Hamiltonian operators and related approximate first integrals, International Journal of Non-Linear Mechanics, 105 (2018), 158-164.
![]() |
[20] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4350-2.![]() ![]() ![]() |
[21] |
G. Saccomandi and R. Vitolo, A translation of the T. Levi-Civita paper: Interpretazione Gruppale degli integrali di un Sistema Canonico, Regul. Chaotic Dyn., 17 (2012), 105–112, arXiv: 1201.2388v1.
doi: 10.1134/S1560354712010091.![]() ![]() ![]() |
[22] |
S. Smale, Topology and mechanics, Invent. Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778.![]() ![]() ![]() |
[23] |
E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.
doi: 10.1017/CBO9780511608797.![]() ![]() ![]() |