• Previous Article
    Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate
  • DCDS-S Home
  • This Issue
  • Next Article
    Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries
doi: 10.3934/dcdss.2020123

Wave-propagation in an incompressible hollow elastic cylinder with residual stress

Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan

Received  February 2019 Revised  July 2019 Published  October 2019

A study is presented to observe the effect of residual stress on waves in an incompressible, hyper-elastic, thick and hollow cylinder of infinite length. The problem is based on the non-linear theory of infinitesimal deformations occurring after a finite deformation. A prototype model of strain energy function is used which adequately includes the effects of residual stress and deformation. The expressions for internal pressure and the axial load are calculated and graphical illustrations are presented. Analysis of infinitesimal wave propagation is carried for the axisymmetric case in the considered cylinder. Numerical solution is obtained in the undeformed configuration and analyzed for the two-point boundary-value problem. Dispersion curves are plotted for varying choice of parameters.

Citation: Moniba Shams. Wave-propagation in an incompressible hollow elastic cylinder with residual stress. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020123
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1966.  Google Scholar

[2]

J. D. Achenbach,, Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, 16. North-Holland Publishing Co., Amsterdam, 1976.  Google Scholar

[3]

S. D. Akbarov and A. N. Guz, Axisymmetric longitudinal wave propagation in pre-stressed compound circular cylinders, Int. J. Eng. Sc., 42 (2004), 769-791.   Google Scholar

[4]

S. D. Akbarov and E. T. Bagirov, Axisymmetric longitudinal wave dispersion in a bi-layered circular cylinder with inhomogeneous initial stresses, J. Sound Vib, 450 (2019), 1-27.   Google Scholar

[5]

M. A. Biot, Non-linear theory of elasticity and the linearized case for a body under initial stress, Phil. Mag., 27 (1939), 468-489.   Google Scholar

[6]

M. A. Biot, The influence of initial stress on elastic waves, J. App. Phy., 11 (1940), 522-530.  doi: 10.1063/1.1712807.  Google Scholar

[7]

C. J. Chuong and Y. C. Fung, On residual stress in arteries, J. Biomech. Eng., 108 (1986), 189-192.   Google Scholar

[8]

A. Guillou and R. W. Ogden, Growth in soft biological tissue and residual stress development, Mechanics of Biological Tissue, Springer, Berlin Heidelberg, (2006), 47–62. Google Scholar

[9] M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158. Academic Press, Inc., New York-London, 1981.   Google Scholar
[10]

A. Hoger, On the residual stress possible in an elastic body with material symmetry, Arch. Rat. Mech. Anal., 88 (1985), 271-290.  doi: 10.1007/BF00752113.  Google Scholar

[11]

A. Hoger, On the determination of residual stress in an elastic body, J. Elasticity, 16 (1986), 303-324.  doi: 10.1007/BF00040818.  Google Scholar

[12]

A. Hoger, Residual stress in an elastic body: A theory for small strains and arbitrary rotations, J. Elasticity, 31 (1993), 1-24.  doi: 10.1007/BF00041621.  Google Scholar

[13]

A. Hoger, The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress, J. Elasticity, 33 (1993), 107-118.  doi: 10.1007/BF00705801.  Google Scholar

[14]

B. E. Johnson and A. Hoger, The dependence of the elasticity tensor on residual stress, J. Elasticity, 33 (1993), 145-165.  doi: 10.1007/BF00705803.  Google Scholar

[15]

B. E. Johnson and A. Hoger, The use of strain energy function to quantify the effect of residual stress on mechanical behaviour, Math. and Mech. of Solids, 4 (1993), 447-470.   Google Scholar

[16]

A. Hoger, The elasticity tensor of a residually stressed material, J. Elasticity, 31 (1991), 219-237.  doi: 10.1007/BF00044971.  Google Scholar

[17]

C. S. Man and W. Y. Lu, Towards an acoustoelastic theory of measurement of residual stress, J. Elasticity, 17 (1987), 159-182.   Google Scholar

[18]

H. D. McNivenA. H. Shah and J. L. Sackman, Axially symmeteric waves in hollow, elastic rods: Part 1, J. Acous. Soc. Am., 40 (1966), 784-792.   Google Scholar

[19]

R. W. Ogden, Nonlinear elasticity, anisotropy and residual stresses in soft tissue, Biomechanics of Soft Tissue in Cardiovasular Systems, Springer, Wien, (2003), 65–108. Google Scholar

[20] R. W. Ogden, NonLinear Elastic Deformations, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, Halsted Press, New York, 1984.   Google Scholar
[21]

R. W. Ogden and C. A. J. Schulze-Bauer, Phenomenological and structural aspects of the mechanical response of arteries, Mech. Bio., 242 (2000), 125-140.   Google Scholar

[22]

R. W. Ogden, Nonlinear Elasticity with Application to Material Modelling, Lecture Notes 6, Centre of Excellence for Advanced Materials and Structures, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2003. Google Scholar

[23]

R. W. Ogden, Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue, Biomechanics of Soft Tissue in Cardiovasular Systems, Springer, Wien, (2003), 65–108. Google Scholar

[24]

A. Ozturk and S. D. Akbarov, Torsional wave propagation in a pre-stressed circular cylinder embedded in a pre-stressed elastic medium, Applied Mathematical Modelling, 33 (2009), 3636-3649.  doi: 10.1016/j.apm.2008.12.003.  Google Scholar

[25]

A. Rachev and K. Hayashi, Theoratical study of the effects of vascular smooth muscle contraction and strain and stress distribution in arteries, Ann. Bio. Eng., 27 (1999), 459-468.   Google Scholar

[26]

E. RodriguezA. Hoger and A. D. McCulloch, Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27 (1994), 455-467.   Google Scholar

[27]

M. Shams, Wave Propagation in Residually-Stressed Materials, PhD thesis, University of Glasgow, Glasgow, UK, 2010. Google Scholar

[28]

M. ShamsM. Destrade and R. W. Ogden, Initial stresses in elastic solids: Constitutive laws and acoustoelasticity, J. Wave Motion, 48 (2011), 552-567.  doi: 10.1016/j.wavemoti.2011.04.004.  Google Scholar

[29]

M. Shams, Reflection of plane waves from the boundary of an initially stressed incompressible half-space, Mathematics and Mechanics of Solids, 24 (2019), 406-433.  doi: 10.1177/1081286517741524.  Google Scholar

[30]

A. J. M. Spencer, Theory of invariants, Continuum Physics, Academic Press, New York, 1 (1971), 239-353.   Google Scholar

[31]

K. Takamizawa and K. Hayashi, Strain energy density function and uniform starin hypothesis for arterial mechanics, J. Biomech., 20 (1987), 7-17.   Google Scholar

[32]

S. Tang, Wave propagation in initially-stressed elastic solids, Acta Mech., 61 (1967), 92-106.   Google Scholar

[33]

X. M. ZhangZ. H. Niu and J. G. Yu, Effect of initial stress on axisymmetric torsional wave in a unidirectional composite hollow cylinder, Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, SPAWDA, 2015 (2015), 349-352.   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1966.  Google Scholar

[2]

J. D. Achenbach,, Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, 16. North-Holland Publishing Co., Amsterdam, 1976.  Google Scholar

[3]

S. D. Akbarov and A. N. Guz, Axisymmetric longitudinal wave propagation in pre-stressed compound circular cylinders, Int. J. Eng. Sc., 42 (2004), 769-791.   Google Scholar

[4]

S. D. Akbarov and E. T. Bagirov, Axisymmetric longitudinal wave dispersion in a bi-layered circular cylinder with inhomogeneous initial stresses, J. Sound Vib, 450 (2019), 1-27.   Google Scholar

[5]

M. A. Biot, Non-linear theory of elasticity and the linearized case for a body under initial stress, Phil. Mag., 27 (1939), 468-489.   Google Scholar

[6]

M. A. Biot, The influence of initial stress on elastic waves, J. App. Phy., 11 (1940), 522-530.  doi: 10.1063/1.1712807.  Google Scholar

[7]

C. J. Chuong and Y. C. Fung, On residual stress in arteries, J. Biomech. Eng., 108 (1986), 189-192.   Google Scholar

[8]

A. Guillou and R. W. Ogden, Growth in soft biological tissue and residual stress development, Mechanics of Biological Tissue, Springer, Berlin Heidelberg, (2006), 47–62. Google Scholar

[9] M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158. Academic Press, Inc., New York-London, 1981.   Google Scholar
[10]

A. Hoger, On the residual stress possible in an elastic body with material symmetry, Arch. Rat. Mech. Anal., 88 (1985), 271-290.  doi: 10.1007/BF00752113.  Google Scholar

[11]

A. Hoger, On the determination of residual stress in an elastic body, J. Elasticity, 16 (1986), 303-324.  doi: 10.1007/BF00040818.  Google Scholar

[12]

A. Hoger, Residual stress in an elastic body: A theory for small strains and arbitrary rotations, J. Elasticity, 31 (1993), 1-24.  doi: 10.1007/BF00041621.  Google Scholar

[13]

A. Hoger, The constitutive equation for finite deformations of a transversely isotropic hyperelastic material with residual stress, J. Elasticity, 33 (1993), 107-118.  doi: 10.1007/BF00705801.  Google Scholar

[14]

B. E. Johnson and A. Hoger, The dependence of the elasticity tensor on residual stress, J. Elasticity, 33 (1993), 145-165.  doi: 10.1007/BF00705803.  Google Scholar

[15]

B. E. Johnson and A. Hoger, The use of strain energy function to quantify the effect of residual stress on mechanical behaviour, Math. and Mech. of Solids, 4 (1993), 447-470.   Google Scholar

[16]

A. Hoger, The elasticity tensor of a residually stressed material, J. Elasticity, 31 (1991), 219-237.  doi: 10.1007/BF00044971.  Google Scholar

[17]

C. S. Man and W. Y. Lu, Towards an acoustoelastic theory of measurement of residual stress, J. Elasticity, 17 (1987), 159-182.   Google Scholar

[18]

H. D. McNivenA. H. Shah and J. L. Sackman, Axially symmeteric waves in hollow, elastic rods: Part 1, J. Acous. Soc. Am., 40 (1966), 784-792.   Google Scholar

[19]

R. W. Ogden, Nonlinear elasticity, anisotropy and residual stresses in soft tissue, Biomechanics of Soft Tissue in Cardiovasular Systems, Springer, Wien, (2003), 65–108. Google Scholar

[20] R. W. Ogden, NonLinear Elastic Deformations, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, Halsted Press, New York, 1984.   Google Scholar
[21]

R. W. Ogden and C. A. J. Schulze-Bauer, Phenomenological and structural aspects of the mechanical response of arteries, Mech. Bio., 242 (2000), 125-140.   Google Scholar

[22]

R. W. Ogden, Nonlinear Elasticity with Application to Material Modelling, Lecture Notes 6, Centre of Excellence for Advanced Materials and Structures, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2003. Google Scholar

[23]

R. W. Ogden, Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue, Biomechanics of Soft Tissue in Cardiovasular Systems, Springer, Wien, (2003), 65–108. Google Scholar

[24]

A. Ozturk and S. D. Akbarov, Torsional wave propagation in a pre-stressed circular cylinder embedded in a pre-stressed elastic medium, Applied Mathematical Modelling, 33 (2009), 3636-3649.  doi: 10.1016/j.apm.2008.12.003.  Google Scholar

[25]

A. Rachev and K. Hayashi, Theoratical study of the effects of vascular smooth muscle contraction and strain and stress distribution in arteries, Ann. Bio. Eng., 27 (1999), 459-468.   Google Scholar

[26]

E. RodriguezA. Hoger and A. D. McCulloch, Stress-dependent finite growth in soft elastic tissues, J. Biomech., 27 (1994), 455-467.   Google Scholar

[27]

M. Shams, Wave Propagation in Residually-Stressed Materials, PhD thesis, University of Glasgow, Glasgow, UK, 2010. Google Scholar

[28]

M. ShamsM. Destrade and R. W. Ogden, Initial stresses in elastic solids: Constitutive laws and acoustoelasticity, J. Wave Motion, 48 (2011), 552-567.  doi: 10.1016/j.wavemoti.2011.04.004.  Google Scholar

[29]

M. Shams, Reflection of plane waves from the boundary of an initially stressed incompressible half-space, Mathematics and Mechanics of Solids, 24 (2019), 406-433.  doi: 10.1177/1081286517741524.  Google Scholar

[30]

A. J. M. Spencer, Theory of invariants, Continuum Physics, Academic Press, New York, 1 (1971), 239-353.   Google Scholar

[31]

K. Takamizawa and K. Hayashi, Strain energy density function and uniform starin hypothesis for arterial mechanics, J. Biomech., 20 (1987), 7-17.   Google Scholar

[32]

S. Tang, Wave propagation in initially-stressed elastic solids, Acta Mech., 61 (1967), 92-106.   Google Scholar

[33]

X. M. ZhangZ. H. Niu and J. G. Yu, Effect of initial stress on axisymmetric torsional wave in a unidirectional composite hollow cylinder, Proceedings of the 2015 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, SPAWDA, 2015 (2015), 349-352.   Google Scholar

Figure 1.  Plot of $ \zeta_1 $(continuous graph) from Eq. (58) and $ \zeta_3 $ (dashed graph) from Eq. (59) for $ B/A = 1.2 $
Figure 2.  $ \frac{1}{\mu}\frac{dP}{d\lambda_a} $ versus $ \lambda_a $, (a) $ \beta_1 = 0 = \beta_2, \lambda_{z} = 1.3 = B/A $, (b) $ \beta_1 = 0 = \beta_2, \lambda_{z} = 1.3, B/A = 1.5 $, (c) $ \beta_1 = 8, \beta_2 = 1, \lambda_{z} = 1.3 = B/A $, (d) $ \beta_1 = 8, \beta_2 = 1, \lambda_{z} = 1.3, B/A = 1.5 $
Figure 3.  $ P^{*} $ versus $ \lambda_a $ for different wall thickness $ B/A $ and zero residual stress with ($ \lambda_{z} = 1.3 $)
Figure 4.  $ P^{*} $ versus $ \lambda_a $ for different $ B/A $ with $ \beta_1 = 2 = \beta_2 $ and $ \lambda_{z} = 1.3 $
Figure 5.  $ P^{*} $ versus $ \lambda_a $ for different $ B/A $ with $ B/A $, $ \beta_1 = -2 = \beta_2 $ and $ \lambda_{z} = 2 $
Figure 6.  $ P^{*} $ versus $ \lambda_a $ with $ B/A = 1.2, \lambda_{z} = 1.2 $ and (a) $ \beta_1 = 0 = \beta_2 $, (b) $ \beta_1 = 0.2, \beta_2 = 0.3 $, (c) $ \beta_1 = 0.7, \beta_2 = 0.3 $, (d) $ \beta_1 = 0.5, \beta_2 = 0.5 $, (e) $ \beta_1 = 0.5, \beta_2 = -0.5 $, (f) $ \beta_1 = 2, \beta_2 = 0.5 $, (g) $ \beta_1 = 0.5, \beta_2 = 2 $
Figure 7.  $ N/A^{'} $ versus $ \lambda_a $ for $ \lambda_{z} = 1.2 $ and (a) $ B/A = 1.2, \beta_1 = 0 = \beta_2 $, (b) $ B/A = 1.5, \beta_1 = 0 = \beta_2 $, (c) $ B/A = 2, \beta_1 = 0 = \beta_2 $, (d) $ B/A = 1.2, \beta_1 = -0.5, \beta_2 = 0.8 $, (e) $ B/A = 1.4, \beta_1 = -0.5, \beta_2 = 0.8 $, (f) $ B/A = 1.5, \beta_1 = -0.8, \beta_2 = 1.5 $, (g) $ B/A = 2, \beta_1 = 0.3, \beta_2 = 0.8 $
Figure 8.  $ N/A^{'} $ versus $ \lambda_a $ for $ B/A = 1.2, \lambda_{z} = 1.2 $ and (a) $ \beta_1 = 0.2, \beta_2 = 0.8 $, (b) $ \beta_1 = 0.8, \beta_2 = -0.2 $, (c) $ \beta_1 = 0 = \beta_2 $, (d) $ \beta_1 = -0.2, \beta_2 = 0.8 $
Figure 9.  Comparison of first three modes between the linear elasticity case from Eq. (165) (continuous curve) and numerical results for $ \beta_1 = 0 = \beta_2, \beta = \hat\beta = 2.5 $ and zero residual stress, from Eq. (152)–(156) with (a) $ \omega $ with respect $ {k} $, (b) $ c $ with respect to $ {k} $
Figure 10.  First modes from Eqs. (152)–(156) in the absence of residual stress, $ \beta_1 = 0 = \beta_2 $, (a) $ \hat\beta = 3 $, (b) $ \hat\beta = 2.5 $, (c) $ \hat\beta = 2 $, (d) $ \hat\beta = 1.5 $
Figure 11.  First modes from Eqs. (152)–(156) for $ \beta_1 = 7, \beta_2 = 2 $ and (a) $ \hat\beta = 1.5 $, (b) $ \hat\beta = 2 $, (c) $ \hat\beta = 2.5 $
Figure 12.  First modes from Eqs. (152)–(156) for $ \hat\beta = 2.5 $ and (a) $ \beta_1 = 0 = \beta_2 $, (b) $ \beta_1 = 4, \beta_2 = 1 $, (c) $ \beta_1 = 7, \beta_2 = 2 $, (d) $ \beta_1 = -4, \beta_2 = 1 $, (e) $ \beta_1 = -5, \beta_2 = -1 $
Figure 13.  Four initial modes from Eqs. (152)–(156) for $ \hat\beta = 2.5 $, with $ \beta_1 = 2, \beta_2 = 1 $ (Continuous graph) and $ \beta_1 = 0 = \beta_2 $ (dashed graph)
[1]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[2]

Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199

[3]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[4]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations & Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[5]

Hong Zhou, M. Gregory Forest. Anchoring distortions coupled with plane Couette & Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular orientation, stress & flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 407-425. doi: 10.3934/dcdsb.2006.6.407

[6]

Donatella Donatelli, Corrado Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Communications on Pure & Applied Analysis, 2009, 8 (2) : 645-654. doi: 10.3934/cpaa.2009.8.645

[7]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[8]

V. Torri. Numerical and dynamical analysis of undulation instability under shear stress. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 423-460. doi: 10.3934/dcdsb.2005.5.423

[9]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[10]

Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447

[11]

Hong-Ming Yin. A free boundary problem arising from a stress-driven diffusion in polymers. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 191-202. doi: 10.3934/dcds.1996.2.191

[12]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[13]

Roger E. Khayat, Martin Ostoja-Starzewski. On the objective rate of heat and stress fluxes. Connection with micro/nano-scale heat convection. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 991-998. doi: 10.3934/dcdsb.2011.15.991

[14]

Jan Burczak, Josef Málek, Piotr Minakowski. Stress-diffusive regularizations of non-dissipative rate-type materials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1233-1256. doi: 10.3934/dcdss.2017067

[15]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037

[16]

Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

[17]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[18]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[19]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[20]

Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (17)
  • HTML views (27)
  • Cited by (0)

Other articles
by authors

[Back to Top]