doi: 10.3934/dcdss.2020127

Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball

1. 

Department of Mathematics, Harvey Mudd College, Claremont CA 91711, USA

2. 

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

Received  December 2018 Revised  March 2019 Published  November 2019

Fund Project: Supported by the Science and Technology of Chongqing Educational Commission(Grant No. KJ1600618), the Research Funds of Chongqing Technology and Business University (Grant no.1756001) and China Scholarship Council

We prove the existence of infinitely many radial solutions to a Kirchhoff type problem in a ball with a super-cubic nonlinearity. Our methods rely on bifurcation analysis and energy estimates.

Citation: Alfonso Castro, Shu-Zhi Song. Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020127
References:
[1]

P. Chen and X. H. Tang, Existence and multiplicity results for infinitely many solutions for Kirchhoff-type problems in $\mathbb{R}^N$, Math. Methods Appl. Sci., 37 (2014), 1828-1837.  doi: 10.1002/mma.2938.  Google Scholar

[2]

B. T. Cheng and X. H. Tang, Infinitely many large energy solutions for Schrödinger-Kirchhoff type problem in $\mathbb{R}^N$, J. Nonlinear Sci. Appl., 9 (2016), 652-660.  doi: 10.22436/jnsa.009.02.28.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[5]

L. Duan and L. H. Huang, Infinitely many solutions for sublinear Schrödinger-Kirchhoff-type equations with general potentials, Results Math., 66 (2014), 181-197.  doi: 10.1007/s00025-014-0371-9.  Google Scholar

[6]

W. J. Feng and X. J. Feng, Multiple solutions for Kirchhoff equations under the partially sublinear case, J. Funct. Spaces, (2015), Art. ID 610858, 4 pp. doi: 10.1155/2015/610858.  Google Scholar

[7]

Y. X. Guo and J. J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 428 (2015), 1054-1069.  doi: 10.1016/j.jmaa.2015.03.064.  Google Scholar

[8]

X.-M. He and W.-M. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser., 26 (2010), 387-394.  doi: 10.1007/s10255-010-0005-2.  Google Scholar

[9]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 369 (2010), 564-574.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[10]

A. Li and J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3147-3158.  doi: 10.1007/s00033-015-0551-9.  Google Scholar

[11]

L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 435 (2016), 955-967.  doi: 10.1016/j.jmaa.2015.10.075.  Google Scholar

[12]

J. J. Nie, Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 417 (2014), 65-79.  doi: 10.1016/j.jmaa.2014.03.027.  Google Scholar

[13]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal., 75 (2012), 3470-3479.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[14]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[15]

S. Z. SongS. J. Chen and C. L. Tang, Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues, Discrete Contin. Dyn. Syst., 36 (2016), 6453-6473.  doi: 10.3934/dcds.2016078.  Google Scholar

[16]

S.-Z. Song, C. L. Tang and S.-J. Chen, Multiple solutions for Kirchhoff type problem near resonance, Electron. J. Differential Equations, 2015, (2015), 7 pp.  Google Scholar

[17]

J. J. SunL. LiM. Cencelj and B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^3$, Nonlinear Analysis, 186 (2019), 33-54.  doi: 10.1016/j.na.2018.10.007.  Google Scholar

[18]

J.-J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[19]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^N$, Nonlinear Anal. Real World Appl., 12 (2011), 1278-1287.  doi: 10.1016/j.nonrwa.2010.09.023.  Google Scholar

[20]

Q. L. XieS. W. Ma and X. Zhang, Infinitely many bound state solutions of Kirchhoff problem in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 29 (2016), 80-97.  doi: 10.1016/j.nonrwa.2015.10.010.  Google Scholar

[21]

X. Z. Yao and C. L. Mu, Infinitely many sign-changing solutions for Kirchhoff-type equations with power nonlinearity, Electron. J. Differential Equations, 2016 (2016), 7 pp.  Google Scholar

[22]

Y. W. Ye, Infinitely many solutions for Kirchhoff type problems, Differ. Equ. Appl., 5 (2013), 83-92.  doi: 10.7153/dea-05-06.  Google Scholar

[23]

Y. W. Ye and C. L. Tang, Multiple solutions for Kirchhoff-type equations in $\mathbb{R}^N$, J. Math. Phys., 54 (2013), 081508, 16 pp. doi: 10.1063/1.4819249.  Google Scholar

[24]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[25]

Q. Y. Zhang and B. Xu, Infinitely many solutions for Schrödinger-Kirchhoff-type equations involving indefinite potential, Electron. J. Qual. Theory Differ. Equ., 2017, (2017), 17 pp. doi: 10.14232/ejqtde.2017.1.58.  Google Scholar

show all references

References:
[1]

P. Chen and X. H. Tang, Existence and multiplicity results for infinitely many solutions for Kirchhoff-type problems in $\mathbb{R}^N$, Math. Methods Appl. Sci., 37 (2014), 1828-1837.  doi: 10.1002/mma.2938.  Google Scholar

[2]

B. T. Cheng and X. H. Tang, Infinitely many large energy solutions for Schrödinger-Kirchhoff type problem in $\mathbb{R}^N$, J. Nonlinear Sci. Appl., 9 (2016), 652-660.  doi: 10.22436/jnsa.009.02.28.  Google Scholar

[3]

S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[5]

L. Duan and L. H. Huang, Infinitely many solutions for sublinear Schrödinger-Kirchhoff-type equations with general potentials, Results Math., 66 (2014), 181-197.  doi: 10.1007/s00025-014-0371-9.  Google Scholar

[6]

W. J. Feng and X. J. Feng, Multiple solutions for Kirchhoff equations under the partially sublinear case, J. Funct. Spaces, (2015), Art. ID 610858, 4 pp. doi: 10.1155/2015/610858.  Google Scholar

[7]

Y. X. Guo and J. J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 428 (2015), 1054-1069.  doi: 10.1016/j.jmaa.2015.03.064.  Google Scholar

[8]

X.-M. He and W.-M. Zou, Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin. Engl. Ser., 26 (2010), 387-394.  doi: 10.1007/s10255-010-0005-2.  Google Scholar

[9]

J. H. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 369 (2010), 564-574.  doi: 10.1016/j.jmaa.2010.03.059.  Google Scholar

[10]

A. Li and J. B. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in $\mathbb{R}^3$, Z. Angew. Math. Phys., 66 (2015), 3147-3158.  doi: 10.1007/s00033-015-0551-9.  Google Scholar

[11]

L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 435 (2016), 955-967.  doi: 10.1016/j.jmaa.2015.10.075.  Google Scholar

[12]

J. J. Nie, Existence and multiplicity of nontrivial solutions for a class of Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 417 (2014), 65-79.  doi: 10.1016/j.jmaa.2014.03.027.  Google Scholar

[13]

J. J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger-Kirchhoff-type equations with radial potential, Nonlinear Anal., 75 (2012), 3470-3479.  doi: 10.1016/j.na.2012.01.004.  Google Scholar

[14]

K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[15]

S. Z. SongS. J. Chen and C. L. Tang, Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues, Discrete Contin. Dyn. Syst., 36 (2016), 6453-6473.  doi: 10.3934/dcds.2016078.  Google Scholar

[16]

S.-Z. Song, C. L. Tang and S.-J. Chen, Multiple solutions for Kirchhoff type problem near resonance, Electron. J. Differential Equations, 2015, (2015), 7 pp.  Google Scholar

[17]

J. J. SunL. LiM. Cencelj and B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems in $\mathbb{R}^3$, Nonlinear Analysis, 186 (2019), 33-54.  doi: 10.1016/j.na.2018.10.007.  Google Scholar

[18]

J.-J. Sun and C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212-1222.  doi: 10.1016/j.na.2010.09.061.  Google Scholar

[19]

X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^N$, Nonlinear Anal. Real World Appl., 12 (2011), 1278-1287.  doi: 10.1016/j.nonrwa.2010.09.023.  Google Scholar

[20]

Q. L. XieS. W. Ma and X. Zhang, Infinitely many bound state solutions of Kirchhoff problem in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 29 (2016), 80-97.  doi: 10.1016/j.nonrwa.2015.10.010.  Google Scholar

[21]

X. Z. Yao and C. L. Mu, Infinitely many sign-changing solutions for Kirchhoff-type equations with power nonlinearity, Electron. J. Differential Equations, 2016 (2016), 7 pp.  Google Scholar

[22]

Y. W. Ye, Infinitely many solutions for Kirchhoff type problems, Differ. Equ. Appl., 5 (2013), 83-92.  doi: 10.7153/dea-05-06.  Google Scholar

[23]

Y. W. Ye and C. L. Tang, Multiple solutions for Kirchhoff-type equations in $\mathbb{R}^N$, J. Math. Phys., 54 (2013), 081508, 16 pp. doi: 10.1063/1.4819249.  Google Scholar

[24]

Z. T. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[25]

Q. Y. Zhang and B. Xu, Infinitely many solutions for Schrödinger-Kirchhoff-type equations involving indefinite potential, Electron. J. Qual. Theory Differ. Equ., 2017, (2017), 17 pp. doi: 10.14232/ejqtde.2017.1.58.  Google Scholar

Figure 1.  Bifurcation curves for solutions to (1.6)
[1]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020032

[3]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[4]

Joseph A. Iaia. Localized radial solutions to a semilinear elliptic equation in $\mathbb{R}^n$. Conference Publications, 1998, 1998 (Special) : 314-326. doi: 10.3934/proc.1998.1998.314

[5]

Ruofei Yao, Yi Li, Hongbin Chen. Uniqueness of positive radial solutions of a semilinear elliptic equation in an annulus. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1585-1594. doi: 10.3934/dcds.2018122

[6]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[7]

Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321

[8]

Takahiro Hashimoto. Pohozaev-Ôtani type inequalities for weak solutions of quasilinear elliptic equations with homogeneous coefficients. Conference Publications, 2011, 2011 (Special) : 643-652. doi: 10.3934/proc.2011.2011.643

[9]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[10]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[11]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[12]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[13]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[14]

Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361

[15]

Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

[16]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[17]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[18]

Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525

[19]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[20]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (41)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]