• Previous Article
    On absence of threshold resonances for Schrödinger and Dirac operators
  • DCDS-S Home
  • This Issue
  • Next Article
    On the effects of the exterior matrix hostility and a U-shaped density dependent dispersal on a diffusive logistic growth model
December  2020, 13(12): 3417-3426. doi: 10.3934/dcdss.2020128

Operators of order 2$ n $ with interior degeneracy

1. 

Department of Mathematics, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

2. 

Department of Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, USA

* Corresponding author: Rosa Maria Mininni

Dedicated to Gisèle Ruiz Goldstein, outstanding mathematician, with great admiration and friendship on her 60th birthday

Received  March 2019 Published  November 2019

We consider a differential operator of order 2$ n $ of the type $ A_n u = (-1)^n (a u^{(n)})^{(n)} $, where $ a(x)>0 $ in $ [0, 1]\setminus\{x_0\} $ and $ a(x_0) = 0 $. We show that, for any $ n\in{\mathbb{N}} $, the operator $ -A_n $ generates a contractive analytic semigroup of angle $ \pi/2 $ on $ L^2 (0, 1) $. Note that the domain of $ A_n $ depends on the type of degeneracy of $ a $. Our theorems extend some previous results in [3] where $ n = 1 $.

Citation: Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128
References:
[1]

I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.  doi: 10.1007/s11854-018-0030-2.  Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Diff. Equations, 10 (2005), 153-190.   Google Scholar

[3]

G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of L2 type, Electron. J. Differ. Equations, 2012 (2012), 30 pp.  Google Scholar

[4]

G. FragnelliG. Ruiz GoldsteinJ. A. GoldsteinR. M. Mininni and S. Romanelli, Generalized Wentzell boundary conditions for second order operators with interior degeneracy, Discrete Cont. Dyn. Systems-S, 9 (2016), 697-715.  doi: 10.3934/dcdss.2016023.  Google Scholar

[5]

G. FragnelliG. MarinoschiR. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.  doi: 10.1007/s00028-014-0247-1.  Google Scholar

[6]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations (eds. A. Favini, G. Fragnelli, R. M. Mininni), Springer INdAM Series 10 (2014), 121-139. doi: 10.1007/978-3-319-11406-4_7.  Google Scholar

[7]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.  doi: 10.1515/anona-2013-0015.  Google Scholar

[8]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016). doi: 10.1090/memo/1146.  Google Scholar

[9]

G. Fragnelli and D. Mugnai, Corrigendum and improvements to "Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations", and its consequences, Mem. Amer. Math. Soc., to appear Google Scholar

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Mineola, New York, 2017.  Google Scholar

show all references

References:
[1]

I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.  doi: 10.1007/s11854-018-0030-2.  Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Diff. Equations, 10 (2005), 153-190.   Google Scholar

[3]

G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of L2 type, Electron. J. Differ. Equations, 2012 (2012), 30 pp.  Google Scholar

[4]

G. FragnelliG. Ruiz GoldsteinJ. A. GoldsteinR. M. Mininni and S. Romanelli, Generalized Wentzell boundary conditions for second order operators with interior degeneracy, Discrete Cont. Dyn. Systems-S, 9 (2016), 697-715.  doi: 10.3934/dcdss.2016023.  Google Scholar

[5]

G. FragnelliG. MarinoschiR. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.  doi: 10.1007/s00028-014-0247-1.  Google Scholar

[6]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations (eds. A. Favini, G. Fragnelli, R. M. Mininni), Springer INdAM Series 10 (2014), 121-139. doi: 10.1007/978-3-319-11406-4_7.  Google Scholar

[7]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.  doi: 10.1515/anona-2013-0015.  Google Scholar

[8]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016). doi: 10.1090/memo/1146.  Google Scholar

[9]

G. Fragnelli and D. Mugnai, Corrigendum and improvements to "Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations", and its consequences, Mem. Amer. Math. Soc., to appear Google Scholar

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Mineola, New York, 2017.  Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[5]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[9]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[11]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (97)
  • HTML views (375)
  • Cited by (0)

[Back to Top]