doi: 10.3934/dcdss.2020128

Operators of order 2$ n $ with interior degeneracy

1. 

Department of Mathematics, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

2. 

Department of Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, USA

* Corresponding author: Rosa Maria Mininni

Dedicated to Gisèle Ruiz Goldstein, outstanding mathematician, with great admiration and friendship on her 60th birthday

Received  March 2019 Published  November 2019

We consider a differential operator of order 2$ n $ of the type $ A_n u = (-1)^n (a u^{(n)})^{(n)} $, where $ a(x)>0 $ in $ [0, 1]\setminus\{x_0\} $ and $ a(x_0) = 0 $. We show that, for any $ n\in{\mathbb{N}} $, the operator $ -A_n $ generates a contractive analytic semigroup of angle $ \pi/2 $ on $ L^2 (0, 1) $. Note that the domain of $ A_n $ depends on the type of degeneracy of $ a $. Our theorems extend some previous results in [3] where $ n = 1 $.

Citation: Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020128
References:
[1]

I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.  doi: 10.1007/s11854-018-0030-2.  Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Diff. Equations, 10 (2005), 153-190.   Google Scholar

[3]

G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of L2 type, Electron. J. Differ. Equations, 2012 (2012), 30 pp.  Google Scholar

[4]

G. FragnelliG. Ruiz GoldsteinJ. A. GoldsteinR. M. Mininni and S. Romanelli, Generalized Wentzell boundary conditions for second order operators with interior degeneracy, Discrete Cont. Dyn. Systems-S, 9 (2016), 697-715.  doi: 10.3934/dcdss.2016023.  Google Scholar

[5]

G. FragnelliG. MarinoschiR. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.  doi: 10.1007/s00028-014-0247-1.  Google Scholar

[6]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations (eds. A. Favini, G. Fragnelli, R. M. Mininni), Springer INdAM Series 10 (2014), 121-139. doi: 10.1007/978-3-319-11406-4_7.  Google Scholar

[7]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.  doi: 10.1515/anona-2013-0015.  Google Scholar

[8]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016). doi: 10.1090/memo/1146.  Google Scholar

[9]

G. Fragnelli and D. Mugnai, Corrigendum and improvements to "Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations", and its consequences, Mem. Amer. Math. Soc., to appear Google Scholar

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Mineola, New York, 2017.  Google Scholar

show all references

References:
[1]

I. BoutaayamouG. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., 135 (2018), 1-35.  doi: 10.1007/s11854-018-0030-2.  Google Scholar

[2]

P. CannarsaP. Martinez and J. Vancostenoble, Null controllability of the degenerate heat equations, Adv. Diff. Equations, 10 (2005), 153-190.   Google Scholar

[3]

G. Fragnelli, G. Ruiz Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of L2 type, Electron. J. Differ. Equations, 2012 (2012), 30 pp.  Google Scholar

[4]

G. FragnelliG. Ruiz GoldsteinJ. A. GoldsteinR. M. Mininni and S. Romanelli, Generalized Wentzell boundary conditions for second order operators with interior degeneracy, Discrete Cont. Dyn. Systems-S, 9 (2016), 697-715.  doi: 10.3934/dcdss.2016023.  Google Scholar

[5]

G. FragnelliG. MarinoschiR. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.  doi: 10.1007/s00028-014-0247-1.  Google Scholar

[6]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in New Prospects in Direct, Inverse and Control Problems for Evolution Equations (eds. A. Favini, G. Fragnelli, R. M. Mininni), Springer INdAM Series 10 (2014), 121-139. doi: 10.1007/978-3-319-11406-4_7.  Google Scholar

[7]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.  doi: 10.1515/anona-2013-0015.  Google Scholar

[8]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., 242 (2016). doi: 10.1090/memo/1146.  Google Scholar

[9]

G. Fragnelli and D. Mugnai, Corrigendum and improvements to "Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations", and its consequences, Mem. Amer. Math. Soc., to appear Google Scholar

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Mineola, New York, 2017.  Google Scholar

[1]

Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023

[2]

Pedro J. Torres, Zhibo Cheng, Jingli Ren. Non-degeneracy and uniqueness of periodic solutions for $2n$-order differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2155-2168. doi: 10.3934/dcds.2013.33.2155

[3]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

[4]

Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060

[5]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[6]

Andrea Bonfiglioli, Ermanno Lanconelli and Francesco Uguzzoni. Levi's parametrix for some sub-elliptic non-divergence form operators. Electronic Research Announcements, 2003, 9: 10-18.

[7]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[8]

Simona Fornaro, Giorgio Metafune, Diego Pallara, Roland Schnaubelt. Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift. Communications on Pure & Applied Analysis, 2015, 14 (2) : 407-419. doi: 10.3934/cpaa.2015.14.407

[9]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[10]

Tian Ma, Shouhong Wang. Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 29-41. doi: 10.3934/dcdsb.2001.1.29

[11]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045

[12]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[13]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[14]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[15]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010

[16]

Isabeau Birindelli, Francoise Demengel. The dirichlet problem for singluar fully nonlinear operators. Conference Publications, 2007, 2007 (Special) : 110-121. doi: 10.3934/proc.2007.2007.110

[17]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

[18]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[19]

Zhongjie Liu, Duanzhi Zhang. Brake orbits on compact symmetric dynamically convex reversible hypersurfaces on $ \mathbb{R}^\text{2n} $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4187-4206. doi: 10.3934/dcds.2019169

[20]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (32)
  • Cited by (0)

[Back to Top]