November  2020, 13(11): 3253-3269. doi: 10.3934/dcdss.2020130

Bogdanov-Takens bifurcation in predator-prey systems

a. 

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guandong 524048, China

b. 

Department of Applied Mathematics, Western University, London, Ontario, N6A 5B7, Canada

c. 

School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China

* Corresponding author: Pei Yu

Received  November 2018 Revised  February 2019 Published  November 2019

In this paper, we consider Bogdanov-Takens bifurcation in two predator-prey systems. It is shown that in the full parameter space, Bogdanov-Talens bifurcation can be codimension $ 2 $, $ 3 $ or $ 4 $. First, the simplest normal form theory is applied to determine the codimension of the systems as well as the unfolding terms. Then, bifurcation analysis is carried out to describe the dynamical behaviour and bifurcation property of the systems around the critical point.

Citation: Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130
References:
[1]

A. D. Bazykin, Nonlinear Dynamics of Interaction Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[2]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funktsional. Anal. i Priložen, 9 (1975), 63.  Google Scholar

[3]

K. S. ChengS. B. Hsu and S. S. Lin, Some results on global stability of a predator-prey system, J. Math. Biology, 12 (1981), 115-126.  doi: 10.1007/BF00275207.  Google Scholar

[4] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[5]

F. DumortierR. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theory Dynam. Systems, 7 (1987), 375-413.  doi: 10.1017/S0143385700004119.  Google Scholar

[6]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57. Marcel Dekker, Inc., New York, 1980.  Google Scholar

[7]

M. Gazor and P. Yu, Formal decomposition method and parametric normal form, Int. J. Bifurcation and Chaos Appl. Sci. Engrg., 20 (2010), 3487-3515.  doi: 10.1142/S0218127410027830.  Google Scholar

[8]

M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.  doi: 10.1016/j.jde.2011.09.043.  Google Scholar

[9]

M. Gazor and M. Moazeni, Parametric normal forms for Bogdanov-Takens singularity; The generalized saddle-node case, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 205-224.  doi: 10.3934/dcds.2015.35.205.  Google Scholar

[10]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[11]

M. A. Han, J. Llibre and J. M. Yang, On uniqueness of limit cycles in general Bogdanov-Takens bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850115, 12 pp. doi: 10.1142/S0218127418501158.  Google Scholar

[12]

M. A. Han, Bifurcation of limit cycles and the cusp of order n, Acta Math. Sinica, New Ser., 13 (1997), 64-75.  doi: 10.1007/BF02560525.  Google Scholar

[13]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.  Google Scholar

[14]

J. Jiang and P. Yu, Multistable phenomena involving equilibria and periodic motions in predator-prey systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750043, 28 pp. doi: 10.1142/S0218127417500432.  Google Scholar

[15]

J. Jiang, W. Zhang and P. Yu, Tristable phenomenon in a predator-prey system arsing from multiple limit cycles bifurcation, submitted for publication, 2018. Google Scholar

[16]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.  Google Scholar

[17]

C. Z. LiJ. Q. Li and Z. E. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1107-1116.  doi: 10.3934/dcdsb.2015.20.1107.  Google Scholar

[18]

A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415.  doi: 10.1073/pnas.6.7.410.  Google Scholar

[19]

P. Mardešić, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergodic Theory Dynam. Systems, 10 (1990), 523-529.  doi: 10.1017/S0143385700005721.  Google Scholar

[20]

S. Q. Ruan and D. M. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[21]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 47-100.   Google Scholar

[22]

V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali, Mem. Acad. Lincei Roma., 2 (1926), 31-113.   Google Scholar

[23]

D. M. XiaoW. X. Li and M. A. Han, Dynamics in a ratio-dependent predator prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29.  doi: 10.1016/j.jmaa.2005.11.048.  Google Scholar

[24]

P. Yu, Simplest normal forms of Hopf and generalized Hopf bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1917-1939.  doi: 10.1142/S0218127499001401.  Google Scholar

[25]

P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19-38.  doi: 10.1006/jsvi.1997.1347.  Google Scholar

[26]

P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.  doi: 10.1088/0951-7715/16/1/317.  Google Scholar

show all references

References:
[1]

A. D. Bazykin, Nonlinear Dynamics of Interaction Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[2]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funktsional. Anal. i Priložen, 9 (1975), 63.  Google Scholar

[3]

K. S. ChengS. B. Hsu and S. S. Lin, Some results on global stability of a predator-prey system, J. Math. Biology, 12 (1981), 115-126.  doi: 10.1007/BF00275207.  Google Scholar

[4] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[5]

F. DumortierR. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theory Dynam. Systems, 7 (1987), 375-413.  doi: 10.1017/S0143385700004119.  Google Scholar

[6]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57. Marcel Dekker, Inc., New York, 1980.  Google Scholar

[7]

M. Gazor and P. Yu, Formal decomposition method and parametric normal form, Int. J. Bifurcation and Chaos Appl. Sci. Engrg., 20 (2010), 3487-3515.  doi: 10.1142/S0218127410027830.  Google Scholar

[8]

M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.  doi: 10.1016/j.jde.2011.09.043.  Google Scholar

[9]

M. Gazor and M. Moazeni, Parametric normal forms for Bogdanov-Takens singularity; The generalized saddle-node case, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 205-224.  doi: 10.3934/dcds.2015.35.205.  Google Scholar

[10]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[11]

M. A. Han, J. Llibre and J. M. Yang, On uniqueness of limit cycles in general Bogdanov-Takens bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850115, 12 pp. doi: 10.1142/S0218127418501158.  Google Scholar

[12]

M. A. Han, Bifurcation of limit cycles and the cusp of order n, Acta Math. Sinica, New Ser., 13 (1997), 64-75.  doi: 10.1007/BF02560525.  Google Scholar

[13]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.  Google Scholar

[14]

J. Jiang and P. Yu, Multistable phenomena involving equilibria and periodic motions in predator-prey systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750043, 28 pp. doi: 10.1142/S0218127417500432.  Google Scholar

[15]

J. Jiang, W. Zhang and P. Yu, Tristable phenomenon in a predator-prey system arsing from multiple limit cycles bifurcation, submitted for publication, 2018. Google Scholar

[16]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.  Google Scholar

[17]

C. Z. LiJ. Q. Li and Z. E. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1107-1116.  doi: 10.3934/dcdsb.2015.20.1107.  Google Scholar

[18]

A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415.  doi: 10.1073/pnas.6.7.410.  Google Scholar

[19]

P. Mardešić, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergodic Theory Dynam. Systems, 10 (1990), 523-529.  doi: 10.1017/S0143385700005721.  Google Scholar

[20]

S. Q. Ruan and D. M. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[21]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 47-100.   Google Scholar

[22]

V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali, Mem. Acad. Lincei Roma., 2 (1926), 31-113.   Google Scholar

[23]

D. M. XiaoW. X. Li and M. A. Han, Dynamics in a ratio-dependent predator prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29.  doi: 10.1016/j.jmaa.2005.11.048.  Google Scholar

[24]

P. Yu, Simplest normal forms of Hopf and generalized Hopf bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1917-1939.  doi: 10.1142/S0218127499001401.  Google Scholar

[25]

P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19-38.  doi: 10.1006/jsvi.1997.1347.  Google Scholar

[26]

P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.  doi: 10.1088/0951-7715/16/1/317.  Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (189)
  • HTML views (357)
  • Cited by (0)

Other articles
by authors

[Back to Top]