doi: 10.3934/dcdss.2020130

Bogdanov-Takens bifurcation in predator-prey systems

a. 

School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, Guandong 524048, China

b. 

Department of Applied Mathematics, Western University, London, Ontario, N6A 5B7, Canada

c. 

School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China

* Corresponding author: Pei Yu

Received  November 2018 Revised  February 2019 Published  November 2019

In this paper, we consider Bogdanov-Takens bifurcation in two predator-prey systems. It is shown that in the full parameter space, Bogdanov-Talens bifurcation can be codimension $ 2 $, $ 3 $ or $ 4 $. First, the simplest normal form theory is applied to determine the codimension of the systems as well as the unfolding terms. Then, bifurcation analysis is carried out to describe the dynamical behaviour and bifurcation property of the systems around the critical point.

Citation: Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020130
References:
[1]

A. D. Bazykin, Nonlinear Dynamics of Interaction Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[2]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funktsional. Anal. i Priložen, 9 (1975), 63.  Google Scholar

[3]

K. S. ChengS. B. Hsu and S. S. Lin, Some results on global stability of a predator-prey system, J. Math. Biology, 12 (1981), 115-126.  doi: 10.1007/BF00275207.  Google Scholar

[4] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[5]

F. DumortierR. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theory Dynam. Systems, 7 (1987), 375-413.  doi: 10.1017/S0143385700004119.  Google Scholar

[6]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57. Marcel Dekker, Inc., New York, 1980.  Google Scholar

[7]

M. Gazor and P. Yu, Formal decomposition method and parametric normal form, Int. J. Bifurcation and Chaos Appl. Sci. Engrg., 20 (2010), 3487-3515.  doi: 10.1142/S0218127410027830.  Google Scholar

[8]

M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.  doi: 10.1016/j.jde.2011.09.043.  Google Scholar

[9]

M. Gazor and M. Moazeni, Parametric normal forms for Bogdanov-Takens singularity; The generalized saddle-node case, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 205-224.  doi: 10.3934/dcds.2015.35.205.  Google Scholar

[10]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[11]

M. A. Han, J. Llibre and J. M. Yang, On uniqueness of limit cycles in general Bogdanov-Takens bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850115, 12 pp. doi: 10.1142/S0218127418501158.  Google Scholar

[12]

M. A. Han, Bifurcation of limit cycles and the cusp of order n, Acta Math. Sinica, New Ser., 13 (1997), 64-75.  doi: 10.1007/BF02560525.  Google Scholar

[13]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.  Google Scholar

[14]

J. Jiang and P. Yu, Multistable phenomena involving equilibria and periodic motions in predator-prey systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750043, 28 pp. doi: 10.1142/S0218127417500432.  Google Scholar

[15]

J. Jiang, W. Zhang and P. Yu, Tristable phenomenon in a predator-prey system arsing from multiple limit cycles bifurcation, submitted for publication, 2018. Google Scholar

[16]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.  Google Scholar

[17]

C. Z. LiJ. Q. Li and Z. E. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1107-1116.  doi: 10.3934/dcdsb.2015.20.1107.  Google Scholar

[18]

A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415.  doi: 10.1073/pnas.6.7.410.  Google Scholar

[19]

P. Mardešić, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergodic Theory Dynam. Systems, 10 (1990), 523-529.  doi: 10.1017/S0143385700005721.  Google Scholar

[20]

S. Q. Ruan and D. M. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[21]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 47-100.   Google Scholar

[22]

V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali, Mem. Acad. Lincei Roma., 2 (1926), 31-113.   Google Scholar

[23]

D. M. XiaoW. X. Li and M. A. Han, Dynamics in a ratio-dependent predator prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29.  doi: 10.1016/j.jmaa.2005.11.048.  Google Scholar

[24]

P. Yu, Simplest normal forms of Hopf and generalized Hopf bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1917-1939.  doi: 10.1142/S0218127499001401.  Google Scholar

[25]

P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19-38.  doi: 10.1006/jsvi.1997.1347.  Google Scholar

[26]

P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.  doi: 10.1088/0951-7715/16/1/317.  Google Scholar

show all references

References:
[1]

A. D. Bazykin, Nonlinear Dynamics of Interaction Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/9789812798725.  Google Scholar

[2]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funktsional. Anal. i Priložen, 9 (1975), 63.  Google Scholar

[3]

K. S. ChengS. B. Hsu and S. S. Lin, Some results on global stability of a predator-prey system, J. Math. Biology, 12 (1981), 115-126.  doi: 10.1007/BF00275207.  Google Scholar

[4] S. N. ChowC. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.  doi: 10.1017/CBO9780511665639.  Google Scholar
[5]

F. DumortierR. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theory Dynam. Systems, 7 (1987), 375-413.  doi: 10.1017/S0143385700004119.  Google Scholar

[6]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Monographs and Textbooks in Pure and Applied Mathematics, 57. Marcel Dekker, Inc., New York, 1980.  Google Scholar

[7]

M. Gazor and P. Yu, Formal decomposition method and parametric normal form, Int. J. Bifurcation and Chaos Appl. Sci. Engrg., 20 (2010), 3487-3515.  doi: 10.1142/S0218127410027830.  Google Scholar

[8]

M. Gazor and P. Yu, Spectral sequences and parametric normal forms, J. Differential Equations, 252 (2012), 1003-1031.  doi: 10.1016/j.jde.2011.09.043.  Google Scholar

[9]

M. Gazor and M. Moazeni, Parametric normal forms for Bogdanov-Takens singularity; The generalized saddle-node case, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 205-224.  doi: 10.3934/dcds.2015.35.205.  Google Scholar

[10]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[11]

M. A. Han, J. Llibre and J. M. Yang, On uniqueness of limit cycles in general Bogdanov-Takens bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850115, 12 pp. doi: 10.1142/S0218127418501158.  Google Scholar

[12]

M. A. Han, Bifurcation of limit cycles and the cusp of order n, Acta Math. Sinica, New Ser., 13 (1997), 64-75.  doi: 10.1007/BF02560525.  Google Scholar

[13]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.  doi: 10.1137/S0036139993253201.  Google Scholar

[14]

J. Jiang and P. Yu, Multistable phenomena involving equilibria and periodic motions in predator-prey systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 1750043, 28 pp. doi: 10.1142/S0218127417500432.  Google Scholar

[15]

J. Jiang, W. Zhang and P. Yu, Tristable phenomenon in a predator-prey system arsing from multiple limit cycles bifurcation, submitted for publication, 2018. Google Scholar

[16]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.  Google Scholar

[17]

C. Z. LiJ. Q. Li and Z. E. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1107-1116.  doi: 10.3934/dcdsb.2015.20.1107.  Google Scholar

[18]

A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S., 6 (1920), 410-415.  doi: 10.1073/pnas.6.7.410.  Google Scholar

[19]

P. Mardešić, The number of limit cycles of polynomial deformations of a Hamiltonian vector field, Ergodic Theory Dynam. Systems, 10 (1990), 523-529.  doi: 10.1017/S0143385700005721.  Google Scholar

[20]

S. Q. Ruan and D. M. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2000/01), 1445-1472.  doi: 10.1137/S0036139999361896.  Google Scholar

[21]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 47-100.   Google Scholar

[22]

V. Volterra, Variazionie fluttuazioni del numero d'individui in specie animali, Mem. Acad. Lincei Roma., 2 (1926), 31-113.   Google Scholar

[23]

D. M. XiaoW. X. Li and M. A. Han, Dynamics in a ratio-dependent predator prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14-29.  doi: 10.1016/j.jmaa.2005.11.048.  Google Scholar

[24]

P. Yu, Simplest normal forms of Hopf and generalized Hopf bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1917-1939.  doi: 10.1142/S0218127499001401.  Google Scholar

[25]

P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), 19-38.  doi: 10.1006/jsvi.1997.1347.  Google Scholar

[26]

P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation, Nonlinearity, 16 (2003), 277-300.  doi: 10.1088/0951-7715/16/1/317.  Google Scholar

[1]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[2]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[3]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[4]

Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130

[5]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[6]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[7]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[8]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020115

[9]

Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815

[10]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[11]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[12]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[13]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[14]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[15]

Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control & Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141

[16]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[17]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[18]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[19]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020129

[20]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]