In this paper, we study the spatiotemporal dynamics of a diffusive predator-prey model with generalist predator subject to homogeneous Neumann boundary condition. Some basic dynamics including the dissipation, persistence and non-persistence(i.e., one species goes extinct), the local and global stability of non-negative constant steady states of the model are investigated. The conditions of Turing instability due to diffusion at positive constant steady states are presented. A critical value $ \rho $ of the ratio $ \frac{d_2}{d_1} $ of diffusions of predator to prey is obtained, such that if $ \frac{d_2}{d_1}>\rho $, then along with other suitable conditions Turing bifurcation will emerge at a positive steady state, in particular so it is with the large diffusion rate of predator or the small diffusion rate of prey; while if $ \frac{d_2}{d_1}<\rho $, both the reaction-diffusion system and its corresponding ODE system are stable at the positive steady state. In addition, we provide some results on the existence and non-existence of positive non-constant steady states. These existence results indicate that the occurrence of Turing bifurcation, along with other suitable conditions, implies the existence of non-constant positive steady states bifurcating from the constant solution. At last, by numerical simulations, we demonstrate Turing pattern formation on the effect of the varied diffusive ratio $ \frac{d_2}{d_1} $. As $ \frac{d_2}{d_1} $ increases, Turing patterns change from spots pattern, stripes pattern into spots-stripes pattern. It indicates that the pattern formation of the model is rich and complex.
Citation: |
[1] |
J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equation, SIAM J. Math. Anal., 17 (1986), 1339-1353.
doi: 10.1137/0517094.![]() ![]() ![]() |
[2] |
J. L. Brown, V. Morales and K. Summers, Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs, Biol. Lett., 5 (2009), 148-151.
doi: 10.1098/rsbl.2008.0591.![]() ![]() |
[3] |
Y. L. Cai, M. Banerjee, Y. Kang and W. M. Wang, Spationtemporal complexity in a predator-prey model with weak Allee effects, Math. Biosci. Eng., 11 (2014), 1247-1274.
doi: 10.3934/mbe.2014.11.1247.![]() ![]() ![]() |
[4] |
Y. L. Cai, Z. J. Gui, X. B. Zhang, H. B. Shi and W. M. Wang, Bifurcations and pattern formation in a predator-prey model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850140, 17 pp.
doi: 10.1142/S0218127418501407.![]() ![]() ![]() |
[5] |
S. Chakraborty, The infuence of generalist predators in spatially extended predator-prey systems, Ecological Complexity, 23 (2015), 50-60.
doi: 10.1016/j.ecocom.2015.06.003.![]() ![]() |
[6] |
D. W. Crowder and W. E. Snyder, Eating their way to the top? Mechanisms underlying the success of invasive generalist predators, Biol. Invas., 12 (2010), 2857-2876.
doi: 10.1007/s10530-010-9733-8.![]() ![]() |
[7] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Tran. Amer. Math. Soc., 359 (2007), 4557-4593.
doi: 10.1090/S0002-9947-07-04262-6.![]() ![]() ![]() |
[8] |
Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013.![]() ![]() ![]() |
[9] |
A. Erbach, F. Lutscher and G. Seo, Bistability and limit cycles in generalist predator-prey dynamics, Ecological Complexity, 14 (2014), 48-55.
doi: 10.1016/j.ecocom.2013.02.005.![]() ![]() |
[10] |
Y.-H. Fan and W.-T. Li, Global asymptotic stability of a ratio-dependent predator-prey system with diffusion, J. Comput. Appl. Math., 188 (2006), 205-227.
doi: 10.1016/j.cam.2005.04.007.![]() ![]() ![]() |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Grundlehren der Mathematischen Wissenschaften, 224. Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-96379-7.![]() ![]() ![]() |
[12] |
R. J. Han and B. X. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal. Real World Appl., 45 (2019), 822-853.
doi: 10.1016/j.nonrwa.2018.05.018.![]() ![]() ![]() |
[13] |
I. Hanski, L. Hansson and H. Henttonen, Specialist predators, generalist predators, and the microtine rodent cycle, J. Anim. Ecol., 60 (1991), 353-367.
doi: 10.2307/5465.![]() ![]() |
[14] |
M. P. Hassell, The Dynamics of Arthropod Predator-Prey Systems, Monographs in Population Biology, 13. Princeton University Press, Princeton, N.J., 1978.
doi: 10.2307/3280305.![]() ![]() ![]() |
[15] |
X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, J. Math. Biol., 75 (2017), 239-257.
doi: 10.1007/s00285-016-1082-5.![]() ![]() ![]() |
[16] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.
doi: 10.1007/BFb0089649.![]() ![]() ![]() |
[17] |
T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401.
doi: 10.1016/j.jmaa.2005.11.065.![]() ![]() ![]() |
[18] |
Y. Kang and J. H. Fewell, Co-evolutionary dynamics of a social parasite-host interaction model: obligate versus facultative social parasitism, Nat. Resour. Model., 28 (2015), 398-455.
doi: 10.1111/nrm.12078.![]() ![]() ![]() |
[19] |
Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, J. Math. Biol., 67 (2013), 1227-1259.
doi: 10.1007/s00285-012-0584-z.![]() ![]() ![]() |
[20] |
X. L. Li, G. P. Hu and Z. S. Feng, Pattern dynamics in a spatial predator-prey model with nonmonotonic response function, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850077, 17 pp.
doi: 10.1142/S0218127418500773.![]() ![]() ![]() |
[21] |
C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7.![]() ![]() ![]() |
[22] |
Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157.![]() ![]() ![]() |
[23] |
S. Madec, J. Casas, G. Barles and C. Suppo, Bistability induced by generalist natural enemies can reverse pest invasions, J. Math. Biol., 75 (2017), 543-575.
doi: 10.1007/s00285-017-1093-x.![]() ![]() ![]() |
[24] |
C. Magal, C. Cosner, S. G. Ruan and J. Casas, Control of invasive hosts by generalist parasitoids, Math. Medi. Biol., 25 (2008), 1-20.
doi: 10.1093/imammb/dqm011.![]() ![]() |
[25] |
Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer Series in Computational Mathematics, 28. Springer-Verlag, Berlin, 2000.
doi: 10.1007/978-3-662-04177-2.![]() ![]() ![]() |
[26] |
P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 919-942.
doi: 10.1017/S0308210500002742.![]() ![]() ![]() |
[27] |
R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-Ⅱ predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886.
doi: 10.1016/j.jde.2009.03.008.![]() ![]() ![]() |
[28] |
R. Peng, M. X. Wang and M. Yang, Positive solutions of a diffusive prey-predator model in a heterogeneous environment, Math. Comput. Modelling, 46 (2007), 1410-1418.
doi: 10.1016/j.mcm.2007.02.001.![]() ![]() ![]() |
[29] |
J. A. Rosenheim, H. K. Kaya, L. E. Ehler, J. J. Marois and B. A. Jaffee, Intraguild predation among biological control agents: Theory and evidence, Biol. Control, 5 (1995), 303-335.
doi: 10.1006/bcon.1995.1038.![]() ![]() |
[30] |
S. I. Rothstein, Evolutionary rates and host defenses against avian brood parasitism, The American Naturalist, 109 (1975), 161-176.
doi: 10.1086/282984.![]() ![]() |
[31] |
W. E. Snyder and A. R. Ives, Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol, Ecology, 84 (2003), 91-107.
![]() |
[32] |
Y. L. Song, H. P. Jiang, Q.-X. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030-2062.
doi: 10.1137/16M1097560.![]() ![]() ![]() |
[33] |
M. D. Sorenson, Effects of intra- and interspecific brood parasitism on a precocial host, the canvasback, Aythya valisineria, Behavioral Ecology, 8 (1997), 153-161.
doi: 10.1093/beheco/8.2.153.![]() ![]() |
[34] |
C. N. Spottiswoode, R. M. Kilner and N. B. Davies, Brood Parasitism, The Evolution of Parental Care, Oxford University Press, Oxford, 2012.
doi: 10.1093/acprof:oso/9780199692576.003.0001.![]() ![]() |
[35] |
W. O. C. Symondson, K. D. Sunderland and M. H. Greenstone, Can generalist predators be effective biocontrol agents?, Annu. Rev. Entomol., 47 (2002), 561-594.
doi: 10.1146/annurev.ento.47.091201.145240.![]() ![]() |
[36] |
Q. Wang, C. Y. Gai and J. D. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.
doi: 10.3934/dcds.2015.35.1239.![]() ![]() ![]() |
[37] |
W. M. Wang, X. Y. Gao, Y. L. Cai, H. B. Shi and S. M. Fu, Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin Inst., 355 (2018), 7226-7245.
doi: 10.1016/j.jfranklin.2018.07.014.![]() ![]() ![]() |
[38] |
S. H. Wu and Y. L. Song, Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 48 (2019), 12-39.
doi: 10.1016/j.nonrwa.2019.01.004.![]() ![]() ![]() |
Stationary hot spots pattern in model (2). The parameter values are taken as (32) and
Stationary stripes pattern in model (2). The parameter values are taken as (32) and
Stationary spots-stripes pattern in model (2). The parameter values are taken as (32) and