• Previous Article
    Polarization dynamics in a resonant optical medium with initial coherence between degenerate states
  • DCDS-S Home
  • This Issue
  • Next Article
    Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients
doi: 10.3934/dcdss.2020133

Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

* Corresponding author: Maoan Han

Received  December 2018 Revised  February 2019 Published  November 2019

Fund Project: The second author is supported by National Natural Science Foundation of China (11771296 and 11431008)

In this paper we study the maximal number of limit cycles for a class of piecewise smooth near-Hamiltonian systems under polynomial perturbations. Using the second order averaging method, we obtain the maximal number of limit cycles of two systems respectively. We also present an application.

Citation: Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020133
References:
[1]

R. Benterki and J. Llibre, Periodic solutions of the Duffing differential equation revisited via the averaging theory, Journal of Nonlinear Modeling and Analysis, 1 (2019), 11-26.   Google Scholar

[2]

X. L. CenS. M. Li and Y. L. Zhao, On the number of limit cycles for a class of discontinuous quadratic differential systems, Journal of Mathematical Analysis and Applications, 449 (2017), 314-342.  doi: 10.1016/j.jmaa.2016.11.033.  Google Scholar

[3]

M. A. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing, Alpha Science International Ltd., Oxford, 2017.  Google Scholar

[4]

M. A. Han, On the maximum number of periodic solution of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 7 (2017), 788-794.   Google Scholar

[5]

M. A. HanG. Chen and C. Sun, On the number of limit cycles in near-Hamiltonian polynomial systems, International Journal of Bifurcation and Chaos, 17 (2007), 2033-2047.  doi: 10.1142/S0218127407018208.  Google Scholar

[6]

M. A. HanV. G. Romanovski and X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qualitative Theory of Dynamical Systems, 15 (2016), 471-479.  doi: 10.1007/s12346-015-0179-3.  Google Scholar

[7]

M. A. Han and L. J. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, Journal of Applied Analysis and Computation, 5 (2015), 809-815.   Google Scholar

[8]

M. A. HanL. J. Sheng and X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, Journal of Differential Equations, 264 (2018), 3596-3618.  doi: 10.1016/j.jde.2017.11.025.  Google Scholar

[9]

M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Springer, New York, 2012. doi: 10.1007/978-1-4471-2918-9.  Google Scholar

[10]

J. ItikawaJ. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, Revista Matematica Iberoamericana, 33 (2017), 1247-1265.  doi: 10.4171/RMI/970.  Google Scholar

[11]

X. Liu and M. A. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, International Journal of Bifurcation and Chaos, 20 (2010), 1379-1390.  doi: 10.1142/S021812741002654X.  Google Scholar

[12]

J. Llibre and A. C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, Journal of Mathematical Analysis and Applications, 413 (2014), 763-775.  doi: 10.1016/j.jmaa.2013.12.031.  Google Scholar

[13]

J. LlibreA. C. Mereu and D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, Journal of Differential Equations, 258 (2015), 4007-4032.  doi: 10.1016/j.jde.2015.01.022.  Google Scholar

[14]

J. LlibreD. D. Novaes and C. A. B. Rodrigues, Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D Nonlinear Phenomena, 353/354 (2017), 1-10.  doi: 10.1016/j.physd.2017.05.003.  Google Scholar

[15]

J. LlibreD. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bulletin Des Sciences Mathématiques, 139 (2015), 229-244.  doi: 10.1016/j.bulsci.2014.08.011.  Google Scholar

[16]

S. Y. Sui and L. Q. Zhao, Bifurcation of limit cycles from the center of a family of cubic polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850063, 11 pp. doi: 10.1142/S0218127418500633.  Google Scholar

[17]

H. H. Tian and M. A. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, Journal of Differential Equations, 263 (2017), 7448-7474.  doi: 10.1016/j.jde.2017.08.011.  Google Scholar

[18]

Y. Q. Xiong and M. A. Han, Limit cycle bifurcations in a class of perturbed piecewise smooth systems, Applied Mathematics and Computation, 242 (2014), 47-64.  doi: 10.1016/j.amc.2014.05.035.  Google Scholar

[19]

J. H. Yang and L. Q. Zhao, Limit cycle bifurcations for piecewise smooth intergrable differential systems, Discrete and Continuous Dynamical Systems Serise B, 22 (2017), 2417-2425.  doi: 10.3934/dcdsb.2017123.  Google Scholar

show all references

References:
[1]

R. Benterki and J. Llibre, Periodic solutions of the Duffing differential equation revisited via the averaging theory, Journal of Nonlinear Modeling and Analysis, 1 (2019), 11-26.   Google Scholar

[2]

X. L. CenS. M. Li and Y. L. Zhao, On the number of limit cycles for a class of discontinuous quadratic differential systems, Journal of Mathematical Analysis and Applications, 449 (2017), 314-342.  doi: 10.1016/j.jmaa.2016.11.033.  Google Scholar

[3]

M. A. Han, Bifurcation Theory of Limit Cycles, Science Press Beijing, Beijing, Alpha Science International Ltd., Oxford, 2017.  Google Scholar

[4]

M. A. Han, On the maximum number of periodic solution of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 7 (2017), 788-794.   Google Scholar

[5]

M. A. HanG. Chen and C. Sun, On the number of limit cycles in near-Hamiltonian polynomial systems, International Journal of Bifurcation and Chaos, 17 (2007), 2033-2047.  doi: 10.1142/S0218127407018208.  Google Scholar

[6]

M. A. HanV. G. Romanovski and X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qualitative Theory of Dynamical Systems, 15 (2016), 471-479.  doi: 10.1007/s12346-015-0179-3.  Google Scholar

[7]

M. A. Han and L. J. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, Journal of Applied Analysis and Computation, 5 (2015), 809-815.   Google Scholar

[8]

M. A. HanL. J. Sheng and X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, Journal of Differential Equations, 264 (2018), 3596-3618.  doi: 10.1016/j.jde.2017.11.025.  Google Scholar

[9]

M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, Springer, New York, 2012. doi: 10.1007/978-1-4471-2918-9.  Google Scholar

[10]

J. ItikawaJ. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, Revista Matematica Iberoamericana, 33 (2017), 1247-1265.  doi: 10.4171/RMI/970.  Google Scholar

[11]

X. Liu and M. A. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, International Journal of Bifurcation and Chaos, 20 (2010), 1379-1390.  doi: 10.1142/S021812741002654X.  Google Scholar

[12]

J. Llibre and A. C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, Journal of Mathematical Analysis and Applications, 413 (2014), 763-775.  doi: 10.1016/j.jmaa.2013.12.031.  Google Scholar

[13]

J. LlibreA. C. Mereu and D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, Journal of Differential Equations, 258 (2015), 4007-4032.  doi: 10.1016/j.jde.2015.01.022.  Google Scholar

[14]

J. LlibreD. D. Novaes and C. A. B. Rodrigues, Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D Nonlinear Phenomena, 353/354 (2017), 1-10.  doi: 10.1016/j.physd.2017.05.003.  Google Scholar

[15]

J. LlibreD. D. Novaes and M. A. Teixeira, On the birth of limit cycles for non-smooth dynamical systems, Bulletin Des Sciences Mathématiques, 139 (2015), 229-244.  doi: 10.1016/j.bulsci.2014.08.011.  Google Scholar

[16]

S. Y. Sui and L. Q. Zhao, Bifurcation of limit cycles from the center of a family of cubic polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850063, 11 pp. doi: 10.1142/S0218127418500633.  Google Scholar

[17]

H. H. Tian and M. A. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, Journal of Differential Equations, 263 (2017), 7448-7474.  doi: 10.1016/j.jde.2017.08.011.  Google Scholar

[18]

Y. Q. Xiong and M. A. Han, Limit cycle bifurcations in a class of perturbed piecewise smooth systems, Applied Mathematics and Computation, 242 (2014), 47-64.  doi: 10.1016/j.amc.2014.05.035.  Google Scholar

[19]

J. H. Yang and L. Q. Zhao, Limit cycle bifurcations for piecewise smooth intergrable differential systems, Discrete and Continuous Dynamical Systems Serise B, 22 (2017), 2417-2425.  doi: 10.3934/dcdsb.2017123.  Google Scholar

[1]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[2]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[3]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[4]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

[5]

Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081

[6]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[7]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119

[8]

Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123

[9]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[10]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[11]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[12]

Weina Wang, Chunlin Wu, Jiansong Deng. Piecewise constant signal and image denoising using a selective averaging method with multiple neighbors. Inverse Problems & Imaging, 2019, 13 (5) : 903-930. doi: 10.3934/ipi.2019041

[13]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[14]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[15]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[16]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111

[17]

Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020005

[18]

André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359

[19]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[20]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

2018 Impact Factor: 0.545

Article outline

[Back to Top]