doi: 10.3934/dcdss.2020134

Dirichlet problem for a diffusive logistic population model with two delays

1. 

Tongji Zhejiang College, Jiaxing, Zhejiang 314051, China

2. 

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China

3. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada

* Corresponding author

Received  December 2018 Revised  February 2019 Published  November 2019

In this paper, we investigate a diffusive logistic equation with non-zero Dirichlet boundary condition and two delays. We first exclude the existence of positive heterogeneous steady states, which implies the uniqueness of constant positive steady state. Then, we analyze the local stability and local Hopf bifurcation at the positive steady state. We show that multiple delays can induce multiple stability switches. Furthermore, we prove global stability of the positive steady state under certain conditions and obtain global Hopf bifurcation results. Our theoretical results are illustrated with numerical simulations.

Citation: Xuejun Pan, Hongying Shu, Yuming Chen. Dirichlet problem for a diffusive logistic population model with two delays. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020134
References:
[1]

B. BánhelyiT. CsendesT. Krisztin and A. Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM J. Appl. Dyn. Syst., 13 (2014), 537-563.  doi: 10.1137/120904226.  Google Scholar

[2]

R. D. Braddock and P. van den Driessche, On a two-lag differential delay equation, J. Austral. Math. Soc. Ser. B, 24 (1982/83), 292-317.  doi: 10.1017/S0334270000002939.  Google Scholar

[3]

S. Busenberg and W. Z. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.  doi: 10.1006/jdeq.1996.0003.  Google Scholar

[4]

S. S. Chen and J. J. Wei, Stability and bifurcation in a diffusive logistic population model with multiple delays, Internat. J. Bifur. Chaos, 25 (2015), 1550107, 9 pp. doi: 10.1142/S0218127415501072.  Google Scholar

[5]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[6]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation, J. Differential Equations, 250 (2011), 1767-1787.  doi: 10.1016/j.jde.2010.11.011.  Google Scholar

[7]

K. Gopalsamy, The Delay Logistic Equation, in Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and Its Applications, vol. 74, Springer, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.  Google Scholar

[8]

G. E. Hutchison, Circular causal systems in ecology, Ann. N. Y. Acad. Sci., 50 (1948), 221-246.   Google Scholar

[9]

R. L. Kitching, Time resources and population dynamics in insects, Austral. J. Ecol., 2 (1977), 31-42.  doi: 10.1111/j.1442-9993.1977.tb01125.x.  Google Scholar

[10] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.   Google Scholar
[11]

J. LaSalle and S. Lefschetz, Stability by Lyapunov's Direct Method, with Applications, Mathematics in Science and Engineering, Vol. 4 Academic Press, New York-London 1961  Google Scholar

[12]

G. Lin, Spreading speed of the delayed Fisher equation without quasimonotonicity, Nonlinear Anal. Real World Appl., 12 (2011), 3713-3718.  doi: 10.1016/j.nonrwa.2011.07.004.  Google Scholar

[13]

M. C. Memory, Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.  doi: 10.1137/0520037.  Google Scholar

[14] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[15]

S. Ruan, Delay differential equations in single species dynamics, Delay Differential Equations and Applications, NATO Sci. Ser. Ⅱ Math. Phys. Chem., Springer, Dordrecht, 205 (2006), 477-517.  doi: 10.1007/1-4020-3647-7_11.  Google Scholar

[16]

Y. SuJ. J. Wei and J. P. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.  doi: 10.1007/s10884-012-9268-z.  Google Scholar

[17]

P. F. Verhulst, Notice sur la loi que la population pursuit dans son accroissement, Corresp. Math. Phys., 10 (1838), 113-121.   Google Scholar

[18]

J. H. Wu, Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[19]

J. H. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

[20]

J. H. Wu and X. F. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[21]

X. P. Yan and J. P. Shi, Stability switches in a logistic population model with mixed instantaneous and delayed density dependence, J. Dynam. Differential Equations, 29 (2017), 113-130.  doi: 10.1007/s10884-015-9432-3.  Google Scholar

[22]

K. Yoshida, The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12 (1982), 321-348.  doi: 10.32917/hmj/1206133754.  Google Scholar

[23]

X. F. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321.  doi: 10.1016/S0377-0427(02)00363-1.  Google Scholar

show all references

References:
[1]

B. BánhelyiT. CsendesT. Krisztin and A. Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM J. Appl. Dyn. Syst., 13 (2014), 537-563.  doi: 10.1137/120904226.  Google Scholar

[2]

R. D. Braddock and P. van den Driessche, On a two-lag differential delay equation, J. Austral. Math. Soc. Ser. B, 24 (1982/83), 292-317.  doi: 10.1017/S0334270000002939.  Google Scholar

[3]

S. Busenberg and W. Z. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Differential Equations, 124 (1996), 80-107.  doi: 10.1006/jdeq.1996.0003.  Google Scholar

[4]

S. S. Chen and J. J. Wei, Stability and bifurcation in a diffusive logistic population model with multiple delays, Internat. J. Bifur. Chaos, 25 (2015), 1550107, 9 pp. doi: 10.1142/S0218127415501072.  Google Scholar

[5]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 352 (2000), 2217-2238.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[6]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation, J. Differential Equations, 250 (2011), 1767-1787.  doi: 10.1016/j.jde.2010.11.011.  Google Scholar

[7]

K. Gopalsamy, The Delay Logistic Equation, in Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and Its Applications, vol. 74, Springer, Dordrecht, 1992. doi: 10.1007/978-94-015-7920-9.  Google Scholar

[8]

G. E. Hutchison, Circular causal systems in ecology, Ann. N. Y. Acad. Sci., 50 (1948), 221-246.   Google Scholar

[9]

R. L. Kitching, Time resources and population dynamics in insects, Austral. J. Ecol., 2 (1977), 31-42.  doi: 10.1111/j.1442-9993.1977.tb01125.x.  Google Scholar

[10] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.   Google Scholar
[11]

J. LaSalle and S. Lefschetz, Stability by Lyapunov's Direct Method, with Applications, Mathematics in Science and Engineering, Vol. 4 Academic Press, New York-London 1961  Google Scholar

[12]

G. Lin, Spreading speed of the delayed Fisher equation without quasimonotonicity, Nonlinear Anal. Real World Appl., 12 (2011), 3713-3718.  doi: 10.1016/j.nonrwa.2011.07.004.  Google Scholar

[13]

M. C. Memory, Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J. Math. Anal., 20 (1989), 533-546.  doi: 10.1137/0520037.  Google Scholar

[14] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[15]

S. Ruan, Delay differential equations in single species dynamics, Delay Differential Equations and Applications, NATO Sci. Ser. Ⅱ Math. Phys. Chem., Springer, Dordrecht, 205 (2006), 477-517.  doi: 10.1007/1-4020-3647-7_11.  Google Scholar

[16]

Y. SuJ. J. Wei and J. P. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dynam. Differential Equations, 24 (2012), 897-925.  doi: 10.1007/s10884-012-9268-z.  Google Scholar

[17]

P. F. Verhulst, Notice sur la loi que la population pursuit dans son accroissement, Corresp. Math. Phys., 10 (1838), 113-121.   Google Scholar

[18]

J. H. Wu, Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[19]

J. H. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.  doi: 10.1090/S0002-9947-98-02083-2.  Google Scholar

[20]

J. H. Wu and X. F. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[21]

X. P. Yan and J. P. Shi, Stability switches in a logistic population model with mixed instantaneous and delayed density dependence, J. Dynam. Differential Equations, 29 (2017), 113-130.  doi: 10.1007/s10884-015-9432-3.  Google Scholar

[22]

K. Yoshida, The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology, Hiroshima Math. J., 12 (1982), 321-348.  doi: 10.32917/hmj/1206133754.  Google Scholar

[23]

X. F. Zou, Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type, J. Comput. Appl. Math., 146 (2002), 309-321.  doi: 10.1016/S0377-0427(02)00363-1.  Google Scholar

Figure 1.  The phase portrait of (9)
Figure 2.  The root distribution of (14)
Figure 3.  Left: $ u_* $ is stable at $ \tau = 5 $. Right: $ u_* $ is unstable at $ \tau = 12 $
Figure 4.  Left: $ u_* $ is stable at $ \tau = 18 $. Right: $ u_* $ is unstable at $ \tau = 30 $
[1]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[2]

Ábel Garab, Veronika Kovács, Tibor Krisztin. Global stability of a price model with multiple delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6855-6871. doi: 10.3934/dcds.2016098

[3]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[4]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[5]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[6]

D. Q. Cao, Y. R. Yang, Y. M. Ge. Characteristic equation approach to stability measures of linear neutral systems with multiple time delays. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 95-105. doi: 10.3934/dcds.2007.17.95

[7]

E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461

[8]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[9]

Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020137

[10]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[11]

Bin Fang, Xue-Zhi Li, Maia Martcheva, Li-Ming Cai. Global stability for a heroin model with two distributed delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 715-733. doi: 10.3934/dcdsb.2014.19.715

[12]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[13]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[14]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[15]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[16]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[17]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[18]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[19]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[20]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]