• Previous Article
    Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures
  • DCDS-S Home
  • This Issue
  • Next Article
    Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays
September  2020, 13(9): 2561-2573. doi: 10.3934/dcdss.2020138

Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects

Department of Mathematics, Alagappa University, Karaikudi-630 004, India

* Corresponding author

Received  November 2018 Revised  April 2019 Published  November 2019

This manuscript prospects the controllability analysis of non-instantaneous impulsive Volterra type fractional differential systems with state delay. By enroling an appropriate Grammian matrix with the assistance of Laplace transform, the conditions to obtain the necessary and sufficiency for the controllability of non-instantaneous impulsive Volterra-type fractional differential equations are derived using algebraic approach and Cayley-Hamilton theorem. A distinctive approach presents in the manuscript, i have taken non-instantaneous impulses into the fractional order dynamical system with state delay and studied the controllability analysis, since this not exists in the available source of literature. Inclusively, i have provided two illustrative examples with the existence of non-instantaneous impulse into the fractional dynamical system. So this demonstrates the validity and efficacy of our obtained criteria of the main section.

Citation: Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138
References:
[1]

R. AgarwalM. Benchohra and B. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44 (2008), 1-21.   Google Scholar

[2]

R. AgarwalM. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.  doi: 10.1007/s10440-008-9356-6.  Google Scholar

[3]

R. AgarwalS. Hristova and D. O. Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.  doi: 10.1016/j.jfranklin.2017.02.002.  Google Scholar

[4]

R. AgarwalS. Hristova and D. O. Regan, p-Moment exponential stability of Caputo fractional differential equations with noninstantaneous random impulses, Journal of Applied Mathematics and Computing, 2016 (2016), 1-26.   Google Scholar

[5]

R. Agarwal, S. Hristova and D. O. Regan, Stability of Solutions to Impulsive Caputo Fractinal Differential Equations, Electron. J. Differential Equations, 2016.  Google Scholar

[6]

R. AgarwalS. Hristova and D. O. Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290-318.  doi: 10.1515/fca-2016-0017.  Google Scholar

[7]

R. AgarwalD. O. Regan and S. Hristova, Monotone iterative technique for the initial value problem for differential equations with noninstantaneous impulses, Appl. Math. Comput., 298 (2017), 45-56.  doi: 10.1016/j.amc.2016.10.009.  Google Scholar

[8]

R. AgarwalD. O. Regan and S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with noninstantaneous impulses, J. Appl. Math. Comput., 53 (2017), 147-168.  doi: 10.1007/s12190-015-0961-z.  Google Scholar

[9]

M. Benchohra and D. Seba, Impulsive Fractional Differential Equations in Banach Spaces, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 2009. doi: 10.14232/ejqtde.2009.4.8.  Google Scholar

[10]

G. BonannoR. Rodriquez-Lopez and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equation, Fract. Calc. Appl. Anal., 17 (2014), 717-744.  doi: 10.2478/s13540-014-0196-y.  Google Scholar

[11]

J. Cao and H. Chen, Some results on impulsive boundary valueproblem for fractional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 11 (2011), 1-24.  doi: 10.14232/ejqtde.2011.1.11.  Google Scholar

[12]

M. FeckanJ. R. Wang and Y. Zhou, Periodic solutions for nonlinear evolution equations with non-istantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.   Google Scholar

[13]

M. FeckanY. Zhou and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050-3060.  doi: 10.1016/j.cnsns.2011.11.017.  Google Scholar

[14]

J. Henderson and A. Ouahab, Impulsive differential inclusions with fractional order, Comput. Math. Appl., 59 (2010), 1191-1226.  doi: 10.1016/j.camwa.2009.05.011.  Google Scholar

[15]

E. Hernandez and D. O. Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[16]

S. Hristova and R. Terzieva, Lipschitz Stability of Differential Equations with Non-Instantaneous Impulses, Adv. Difference Equ., 2016. doi: 10.1186/s13662-016-1045-6.  Google Scholar

[17]

W. Jiang and W. Z. Song, Controllability of singular systems with control delay, Automatica, 37 (2001), 1873-1877.   Google Scholar

[18]

R. E. KalmanY. C. Ho and K. S. Narendra, Controllability of linear dynamical systems, Contributions to Differential Equations, 1 (1963), 189-213.   Google Scholar

[19]

T. D. Ke and D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.  doi: 10.2478/s13540-014-0157-5.  Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[21]

P. Li and Ch. Xu, Boundary Value Problems of Fractional Order Differential Equation with Integral Boundary Conditions and Not Instantaneous Impulses, J. Funct. Spaces, 2015. doi: 10.1155/2015/954925.  Google Scholar

[22]

N. I. Mahmudov, Controllability of Linear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 259 (2001), 64-82.  doi: 10.1006/jmaa.2000.7386.  Google Scholar

[23]

N. I. Mahmudov, Controllability of Semilinear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 288 (2003), 197-211.  doi: 10.1016/S0022-247X(03)00592-4.  Google Scholar

[24]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[25]

D. N. PandeyS. Das and N. Sukavanam, Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses, Int. J. Nonlinear Sci., 18 (2014), 145-155.   Google Scholar

[26]

M. PierriD. O. Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743-6749.  doi: 10.1016/j.amc.2012.12.084.  Google Scholar

[27]

I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[28]

R. Rodriquez-Lopez and S. Tersian, Multiple solutions to boundary value problm for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016-1038.  doi: 10.2478/s13540-014-0212-2.  Google Scholar

[29]

X. B. ShuY. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.  Google Scholar

[30]

A. Sood and S. K. Srivastava, On Stability of Differential Systems with Noninstantaneous Impulses, Math. Probl. Eng., 2015. doi: 10.1155/2015/691687.  Google Scholar

[31]

C. Tunc, A note on the qualitative behaviors of non-linear Volterra integro-differential equation, J. Egyptian Math. Soc., 24 (2016), 187-192.  doi: 10.1016/j.joems.2014.12.010.  Google Scholar

[32]

C. Tunc and O. Tunc, New qualitative criteria for solutions of Volterra integro-differential equations, Arab Journal of Basic and Applied Sciences, 25 (2018), 158-165.   Google Scholar

[33]

J. R. WangM. Feckan and Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 156 (2013), 13-32.  doi: 10.1007/s10957-012-0170-y.  Google Scholar

[34]

J. Wang and Z. Lin, A class of impulsive nonautonomous differential equations and Ulam - Hyers-Rassias stability, Math. Methods Appl. Sci., 38 (2015), 868-880.  doi: 10.1002/mma.3113.  Google Scholar

[35]

J. WangY. Zhou and Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649-657.  doi: 10.1016/j.amc.2014.06.002.  Google Scholar

[36]

R. WangM. Feckan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-361.  doi: 10.4310/DPDE.2011.v8.n4.a3.  Google Scholar

[37]

X. ZhangX. Huang and Z. Liu, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775-781.  doi: 10.1016/j.nahs.2010.05.007.  Google Scholar

show all references

References:
[1]

R. AgarwalM. Benchohra and B. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44 (2008), 1-21.   Google Scholar

[2]

R. AgarwalM. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.  doi: 10.1007/s10440-008-9356-6.  Google Scholar

[3]

R. AgarwalS. Hristova and D. O. Regan, Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions, J. Franklin Inst., 354 (2017), 3097-3119.  doi: 10.1016/j.jfranklin.2017.02.002.  Google Scholar

[4]

R. AgarwalS. Hristova and D. O. Regan, p-Moment exponential stability of Caputo fractional differential equations with noninstantaneous random impulses, Journal of Applied Mathematics and Computing, 2016 (2016), 1-26.   Google Scholar

[5]

R. Agarwal, S. Hristova and D. O. Regan, Stability of Solutions to Impulsive Caputo Fractinal Differential Equations, Electron. J. Differential Equations, 2016.  Google Scholar

[6]

R. AgarwalS. Hristova and D. O. Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290-318.  doi: 10.1515/fca-2016-0017.  Google Scholar

[7]

R. AgarwalD. O. Regan and S. Hristova, Monotone iterative technique for the initial value problem for differential equations with noninstantaneous impulses, Appl. Math. Comput., 298 (2017), 45-56.  doi: 10.1016/j.amc.2016.10.009.  Google Scholar

[8]

R. AgarwalD. O. Regan and S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with noninstantaneous impulses, J. Appl. Math. Comput., 53 (2017), 147-168.  doi: 10.1007/s12190-015-0961-z.  Google Scholar

[9]

M. Benchohra and D. Seba, Impulsive Fractional Differential Equations in Banach Spaces, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 2009. doi: 10.14232/ejqtde.2009.4.8.  Google Scholar

[10]

G. BonannoR. Rodriquez-Lopez and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equation, Fract. Calc. Appl. Anal., 17 (2014), 717-744.  doi: 10.2478/s13540-014-0196-y.  Google Scholar

[11]

J. Cao and H. Chen, Some results on impulsive boundary valueproblem for fractional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 11 (2011), 1-24.  doi: 10.14232/ejqtde.2011.1.11.  Google Scholar

[12]

M. FeckanJ. R. Wang and Y. Zhou, Periodic solutions for nonlinear evolution equations with non-istantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.   Google Scholar

[13]

M. FeckanY. Zhou and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050-3060.  doi: 10.1016/j.cnsns.2011.11.017.  Google Scholar

[14]

J. Henderson and A. Ouahab, Impulsive differential inclusions with fractional order, Comput. Math. Appl., 59 (2010), 1191-1226.  doi: 10.1016/j.camwa.2009.05.011.  Google Scholar

[15]

E. Hernandez and D. O. Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[16]

S. Hristova and R. Terzieva, Lipschitz Stability of Differential Equations with Non-Instantaneous Impulses, Adv. Difference Equ., 2016. doi: 10.1186/s13662-016-1045-6.  Google Scholar

[17]

W. Jiang and W. Z. Song, Controllability of singular systems with control delay, Automatica, 37 (2001), 1873-1877.   Google Scholar

[18]

R. E. KalmanY. C. Ho and K. S. Narendra, Controllability of linear dynamical systems, Contributions to Differential Equations, 1 (1963), 189-213.   Google Scholar

[19]

T. D. Ke and D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.  doi: 10.2478/s13540-014-0157-5.  Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[21]

P. Li and Ch. Xu, Boundary Value Problems of Fractional Order Differential Equation with Integral Boundary Conditions and Not Instantaneous Impulses, J. Funct. Spaces, 2015. doi: 10.1155/2015/954925.  Google Scholar

[22]

N. I. Mahmudov, Controllability of Linear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 259 (2001), 64-82.  doi: 10.1006/jmaa.2000.7386.  Google Scholar

[23]

N. I. Mahmudov, Controllability of Semilinear Stochastic Systems in Hilbert Spaces, J. Math. Anal. Appl., 288 (2003), 197-211.  doi: 10.1016/S0022-247X(03)00592-4.  Google Scholar

[24]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[25]

D. N. PandeyS. Das and N. Sukavanam, Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses, Int. J. Nonlinear Sci., 18 (2014), 145-155.   Google Scholar

[26]

M. PierriD. O. Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743-6749.  doi: 10.1016/j.amc.2012.12.084.  Google Scholar

[27]

I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[28]

R. Rodriquez-Lopez and S. Tersian, Multiple solutions to boundary value problm for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016-1038.  doi: 10.2478/s13540-014-0212-2.  Google Scholar

[29]

X. B. ShuY. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.  Google Scholar

[30]

A. Sood and S. K. Srivastava, On Stability of Differential Systems with Noninstantaneous Impulses, Math. Probl. Eng., 2015. doi: 10.1155/2015/691687.  Google Scholar

[31]

C. Tunc, A note on the qualitative behaviors of non-linear Volterra integro-differential equation, J. Egyptian Math. Soc., 24 (2016), 187-192.  doi: 10.1016/j.joems.2014.12.010.  Google Scholar

[32]

C. Tunc and O. Tunc, New qualitative criteria for solutions of Volterra integro-differential equations, Arab Journal of Basic and Applied Sciences, 25 (2018), 158-165.   Google Scholar

[33]

J. R. WangM. Feckan and Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 156 (2013), 13-32.  doi: 10.1007/s10957-012-0170-y.  Google Scholar

[34]

J. Wang and Z. Lin, A class of impulsive nonautonomous differential equations and Ulam - Hyers-Rassias stability, Math. Methods Appl. Sci., 38 (2015), 868-880.  doi: 10.1002/mma.3113.  Google Scholar

[35]

J. WangY. Zhou and Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649-657.  doi: 10.1016/j.amc.2014.06.002.  Google Scholar

[36]

R. WangM. Feckan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-361.  doi: 10.4310/DPDE.2011.v8.n4.a3.  Google Scholar

[37]

X. ZhangX. Huang and Z. Liu, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybrid Syst., 4 (2010), 775-781.  doi: 10.1016/j.nahs.2010.05.007.  Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[13]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (223)
  • HTML views (399)
  • Cited by (0)

Other articles
by authors

[Back to Top]