• Previous Article
    Dirichlet problem for a diffusive logistic population model with two delays
  • DCDS-S Home
  • This Issue
  • Next Article
    Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects
doi: 10.3934/dcdss.2020139

Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations

1. 

Department of Mathematics, Shaheed BB University, Sheringal, Dir Upper 18000, Khybar Pakhtunkhwa, Pakistan

2. 

Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, 65080 Van, Turkey

3. 

Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia

* Corresponding author: Cemil Tunc

Received  January 2019 Revised  February 2019 Published  November 2019

In this paper, we are dealing with singular fractional differential equations (DEs) having delay and
$ \mho_p $
(
$ p $
-Laplacian operator). In our problem, we Contemplate two fractional order differential operators that is Riemann–Liouville and Caputo's with fractional integral and fractional differential initial boundary conditions.The SFDE is given by
$ \begin{equation*} \left\{\begin{split} &\mathcal{D}^{\gamma}\big[\mho^*_p[\mathcal{D}^{\kappa}x(t)]\big]+\mathcal{Q}(t)\zeta_1(t, x(t-\varrho^*)) = 0, \\& \mathcal{I}_0^{1-\gamma}\big(\mho^*_p[\mathcal{D}^{\kappa}x(t)]\big)|_{t = 0} = 0 = \mathcal{I}_0^{2-\gamma}\big(\mho^*_p[\mathcal{D}^{\kappa}x(t)]\big)|_{t = 0}, \\& \mathcal{D}^{\delta^*}x(1) = 0, \, \, x(1) = x'(0), \, \, x^{(k)}(0) = 0\text{ for $k = 2, 3, \ldots, n-1$}, \end{split}\right. \end{equation*} $
$ \zeta_1 $
is a continuous function and singular at
$ t $
and
$ x(t) $
for some values of
$ t\in [0, 1] $
. The operator
$ \mathcal{D}^{\gamma}, \, $
is Riemann–Liouville fractional derivative while
$ \mathcal{D}^{\delta^*}, \mathcal{D}^{\kappa} $
stand for Caputo fractional derivatives and
$ \delta^*, \, \gamma\in(1, 2] $
,
$ n-1<\kappa\leq n, $
where
$ n\geq3 $
. For the study of the EUS, fixed point approach is followed in this paper and an application is given to explain the findings.
Citation: Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020139
References:
[1]

B. AhmadA. AlsaediR. P. Agarwal and A. Alsharif, On sequential fractional integro-differential equations with nonlocal integral boundary conditions, Bull. Malays. Math. Sci. Soc., 41 (2018), 1725-1737.  doi: 10.1007/s40840-016-0421-4.  Google Scholar

[2]

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.  Google Scholar

[3]

A. Atangana and J. F. Gómez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Phys. A, 476 (2017), 1-14.  doi: 10.1016/j.physa.2017.02.016.  Google Scholar

[4]

A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-22.  doi: 10.1140/epjp/i2018-12021-3.  Google Scholar

[5]

A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-L iouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.  doi: 10.1002/num.22195.  Google Scholar

[6]

T. AbdeljawadF. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.  doi: 10.1007/s11425-008-0068-1.  Google Scholar

[7]

T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11 pp. doi: 10.1063/1.2970709.  Google Scholar

[8]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.  Google Scholar

[9]

T. Abdeljawad and J. Alzabut, On Riemann-Liouville fractional q–difference equations and their application to retarded logistic type model, Math. Methods Appl. Sci., 41 (2018), 8953-8962.  doi: 10.1002/mma.4743.  Google Scholar

[10]

B. Ahmad and R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516-534.  doi: 10.1016/j.amc.2018.07.025.  Google Scholar

[11]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898.   Google Scholar

[12]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898.   Google Scholar

[13]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Difference Equ., 2017 (2017), 11 pp. doi: 10.1186/s13662-017-1285-0.  Google Scholar

[14]

A. Babakhani and T. Abdeljawad, A Caputo Fractional Order Boundary Value Problem with Integral Boundary Conditions, J. Comput. Anal. Appl., 15 (2013), 753-763.   Google Scholar

[15]

Y. K. Chang and R. Ponce, Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equations Appl., 30 (2018), 347-369.  doi: 10.1216/JIE-2018-30-3-347.  Google Scholar

[16]

A. Coronel-EscamillaJ. F. Gómez-AguilarM. G. López-LópezV. M. Alvarado-Martínez and G. V. Guerrero-Ramírez, Triple pendulum model involving fractional derivatives with different kernels, Chaos Solitons Fractals, 91 (2016), 248-261.  doi: 10.1016/j.chaos.2016.06.007.  Google Scholar

[17]

J. Henderson and R. Luca, Systems of Riemann–Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput., 309 (2017), 303-323.  doi: 10.1016/j.amc.2017.03.044.  Google Scholar

[18]

L. GuoL. Liu and Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal., Model. Control, 23 (2018), 182-203.  doi: 10.15388/NA.2018.2.3.  Google Scholar

[19]

A. GhanmiaM. Kratoub and K. Saoudib, A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative, Filomat, 32 (2018), 653-669.  doi: 10.2298/FIL1802653G.  Google Scholar

[20]

J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 13pp. Google Scholar

[21]

J. F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J. M. Reyes and I. O. Sosa, Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, Adv. Difference Equ., 2016 (2016), Paper No. 173, 13 pp. doi: 10.1186/s13662-016-0908-1.  Google Scholar

[22]

R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[23]

S. Hristova and C. Tunc, Stability of nonlinear volterra integro-differential equations with caputo fractional derivative and bounded delays, Electron. J. Differential Equations, 2019 (2019), Paper No. 30, 11 pp.  Google Scholar

[24]

D. Ji, Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian., Bull. Malays. Math. Sci. Soc., 41 (2018), 249-263.  doi: 10.1007/s40840-015-0276-0.  Google Scholar

[25]

E. T. Karimov and K. Sadarangani, Existence of a unique positive solution for a singular fractional boundary value problem, Carpathian J. Math., 34 (2018), 57-64.   Google Scholar

[26]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[27]

A. Khan, Y. Li, K. Shah and T. S. Khan, On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), Art. ID 8197610, 9 pp. doi: 10.1155/2017/8197610.  Google Scholar

[28]

H. KhanC. TuncW. Chen and A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211-1226.   Google Scholar

[29]

H. KhanW. Chen and H. Sun, Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p–Laplacian in Banach space, Math. Methods Appl. Sci., 41 (2018), 3430-3440.  doi: 10.1002/mma.4835.  Google Scholar

[30]

B. LópezJ. Harjani and K. Sadarangani, Existence of positive solutions in the space of Lipschitz functions to a class of fractional differential equations of arbitrary order, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112 (2018), 1281-1294.  doi: 10.1007/s13398-017-0426-3.  Google Scholar

[31]

R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, Results Math., 73 (2018), Art. 125, 15 pp. doi: 10.1007/s00025-018-0887-5.  Google Scholar

[32]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[33]

S. G. Samko, A. A. Kilbas and O. I Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[34]

K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, Fract. Calc. Appl. Anal., 20 (2017), 1507-1530.  doi: 10.1515/fca-2017-0079.  Google Scholar

[35]

H. Srivastava, A. El-Sayed and F. Gaafar, A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions, Symmetry, 2018. doi: 10.3390/sym10100508.  Google Scholar

[36]

S. Xie and Y. Xie, Nonlinear solutions of non local boundary value problems for nonlinear higher-order singular fractional differential equations, J. Appl. Anal. Comput., 8 (2018), 938-953.   Google Scholar

[37]

F. Yan, M. Zuo and X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), Paper No. 51, 10 pp. doi: 10.1186/s13661-018-0972-4.  Google Scholar

[38]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mexicana Fís., 62 (2016), 310-316.   Google Scholar

[39]

X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 80 (2028), 12-19.  doi: 10.1016/j.aml.2017.12.022.  Google Scholar

[40]

L. Zhang, Z. Sun and X. Hao, Positive solutions for a singular fractional nonlocal boundary value problem, Adv. Difference Equ., 2018 (2018), Paper No. 381, 8 pp. doi: 10.1186/s13662-018-1844-z.  Google Scholar

[41]

C. J. Zuñiga-Aguilar, J. F. Gómez-Aguilar and R. F. Escobar-Jiménez, Romero-Ugalde HM. Robust control for fractional variable-order chaotic systems with non-singular kernel, The European Physical Journal Plus, 133 (2018), 13pp. Google Scholar

show all references

References:
[1]

B. AhmadA. AlsaediR. P. Agarwal and A. Alsharif, On sequential fractional integro-differential equations with nonlocal integral boundary conditions, Bull. Malays. Math. Sci. Soc., 41 (2018), 1725-1737.  doi: 10.1007/s40840-016-0421-4.  Google Scholar

[2]

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.  Google Scholar

[3]

A. Atangana and J. F. Gómez-Aguilar, A new derivative with normal distribution kernel: Theory, methods and applications, Phys. A, 476 (2017), 1-14.  doi: 10.1016/j.physa.2017.02.016.  Google Scholar

[4]

A. Atangana and J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133 (2018), 1-22.  doi: 10.1140/epjp/i2018-12021-3.  Google Scholar

[5]

A. Atangana and J. F. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-L iouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502-1523.  doi: 10.1002/num.22195.  Google Scholar

[6]

T. AbdeljawadF. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.  doi: 10.1007/s11425-008-0068-1.  Google Scholar

[7]

T. Abdeljawad, D. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11 pp. doi: 10.1063/1.2970709.  Google Scholar

[8]

T. Abdeljawad and Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2018), 218-230.  doi: 10.1016/j.cam.2017.10.021.  Google Scholar

[9]

T. Abdeljawad and J. Alzabut, On Riemann-Liouville fractional q–difference equations and their application to retarded logistic type model, Math. Methods Appl. Sci., 41 (2018), 8953-8962.  doi: 10.1002/mma.4743.  Google Scholar

[10]

B. Ahmad and R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516-534.  doi: 10.1016/j.amc.2018.07.025.  Google Scholar

[11]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898.   Google Scholar

[12]

J. AlzabutT. Abdeljawad and D. Baleanu, Nonlinear delay fractional difference equations with application on discrete fractional Lotka-Volterra model, J. Comput. Anal. Appl., 25 (2018), 889-898.   Google Scholar

[13]

T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Difference Equ., 2017 (2017), 11 pp. doi: 10.1186/s13662-017-1285-0.  Google Scholar

[14]

A. Babakhani and T. Abdeljawad, A Caputo Fractional Order Boundary Value Problem with Integral Boundary Conditions, J. Comput. Anal. Appl., 15 (2013), 753-763.   Google Scholar

[15]

Y. K. Chang and R. Ponce, Uniform exponential stability and applications to bounded solutions of integro-differential equations in Banach spaces, J. Integral Equations Appl., 30 (2018), 347-369.  doi: 10.1216/JIE-2018-30-3-347.  Google Scholar

[16]

A. Coronel-EscamillaJ. F. Gómez-AguilarM. G. López-LópezV. M. Alvarado-Martínez and G. V. Guerrero-Ramírez, Triple pendulum model involving fractional derivatives with different kernels, Chaos Solitons Fractals, 91 (2016), 248-261.  doi: 10.1016/j.chaos.2016.06.007.  Google Scholar

[17]

J. Henderson and R. Luca, Systems of Riemann–Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput., 309 (2017), 303-323.  doi: 10.1016/j.amc.2017.03.044.  Google Scholar

[18]

L. GuoL. Liu and Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal., Model. Control, 23 (2018), 182-203.  doi: 10.15388/NA.2018.2.3.  Google Scholar

[19]

A. GhanmiaM. Kratoub and K. Saoudib, A Multiplicity Results for a Singular Problem Involving a Riemann-Liouville Fractional Derivative, Filomat, 32 (2018), 653-669.  doi: 10.2298/FIL1802653G.  Google Scholar

[20]

J. F. Gómez-Aguilar and A. Atangana, New insight in fractional differentiation: Power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 (2017), 13pp. Google Scholar

[21]

J. F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J. M. Reyes and I. O. Sosa, Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel, Adv. Difference Equ., 2016 (2016), Paper No. 173, 13 pp. doi: 10.1186/s13662-016-0908-1.  Google Scholar

[22]

R. Hilfer, Application of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747.  Google Scholar

[23]

S. Hristova and C. Tunc, Stability of nonlinear volterra integro-differential equations with caputo fractional derivative and bounded delays, Electron. J. Differential Equations, 2019 (2019), Paper No. 30, 11 pp.  Google Scholar

[24]

D. Ji, Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian., Bull. Malays. Math. Sci. Soc., 41 (2018), 249-263.  doi: 10.1007/s40840-015-0276-0.  Google Scholar

[25]

E. T. Karimov and K. Sadarangani, Existence of a unique positive solution for a singular fractional boundary value problem, Carpathian J. Math., 34 (2018), 57-64.   Google Scholar

[26]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[27]

A. Khan, Y. Li, K. Shah and T. S. Khan, On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), Art. ID 8197610, 9 pp. doi: 10.1155/2017/8197610.  Google Scholar

[28]

H. KhanC. TuncW. Chen and A. Khan, Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8 (2018), 1211-1226.   Google Scholar

[29]

H. KhanW. Chen and H. Sun, Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p–Laplacian in Banach space, Math. Methods Appl. Sci., 41 (2018), 3430-3440.  doi: 10.1002/mma.4835.  Google Scholar

[30]

B. LópezJ. Harjani and K. Sadarangani, Existence of positive solutions in the space of Lipschitz functions to a class of fractional differential equations of arbitrary order, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112 (2018), 1281-1294.  doi: 10.1007/s13398-017-0426-3.  Google Scholar

[31]

R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, Results Math., 73 (2018), Art. 125, 15 pp. doi: 10.1007/s00025-018-0887-5.  Google Scholar

[32]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[33]

S. G. Samko, A. A. Kilbas and O. I Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[34]

K. Saoudi, A critical fractional elliptic equation with singular nonlinearities, Fract. Calc. Appl. Anal., 20 (2017), 1507-1530.  doi: 10.1515/fca-2017-0079.  Google Scholar

[35]

H. Srivastava, A. El-Sayed and F. Gaafar, A Class of Nonlinear Boundary Value Problems for an Arbitrary Fractional-Order Differential Equation with the Riemann-Stieltjes Functional Integral and Infinite-Point Boundary Conditions, Symmetry, 2018. doi: 10.3390/sym10100508.  Google Scholar

[36]

S. Xie and Y. Xie, Nonlinear solutions of non local boundary value problems for nonlinear higher-order singular fractional differential equations, J. Appl. Anal. Comput., 8 (2018), 938-953.   Google Scholar

[37]

F. Yan, M. Zuo and X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), Paper No. 51, 10 pp. doi: 10.1186/s13661-018-0972-4.  Google Scholar

[38]

H. Yépez-MartínezJ. F. Gómez-AguilarI. O. SosaJ. M. Reyes and J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mexicana Fís., 62 (2016), 310-316.   Google Scholar

[39]

X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 80 (2028), 12-19.  doi: 10.1016/j.aml.2017.12.022.  Google Scholar

[40]

L. Zhang, Z. Sun and X. Hao, Positive solutions for a singular fractional nonlocal boundary value problem, Adv. Difference Equ., 2018 (2018), Paper No. 381, 8 pp. doi: 10.1186/s13662-018-1844-z.  Google Scholar

[41]

C. J. Zuñiga-Aguilar, J. F. Gómez-Aguilar and R. F. Escobar-Jiménez, Romero-Ugalde HM. Robust control for fractional variable-order chaotic systems with non-singular kernel, The European Physical Journal Plus, 133 (2018), 13pp. Google Scholar

[1]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040

[2]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[3]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[4]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[5]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[6]

Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141-146. doi: 10.3934/proc.2003.2003.141

[7]

Golamreza Zamani Eskandani, Hamid Vaezi. Hyers--Ulam--Rassias stability of derivations in proper Jordan $CQ^{*}$-algebras. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1469-1477. doi: 10.3934/dcds.2011.31.1469

[8]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[9]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[10]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[11]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[12]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[13]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[14]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[15]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 867-880. doi: 10.3934/dcdss.2020050

[16]

Ndolane Sene. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020173

[17]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019216

[18]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[19]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[20]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (22)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]