• Previous Article
    Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion
  • DCDS-S Home
  • This Issue
  • Next Article
    Bounded perturbation for evolution equations with a parameter & application to population dynamics
July  2021, 14(7): 2151-2161. doi: 10.3934/dcdss.2020144

Mathematical model of diabetes and its complication involving fractional operator without singular kernal

1. 

Departement of Mathematics, Amity School Of Applied Sciences, Amity University Rajasthan, Jaipur-303002, India

2. 

School of Liberal Studies, Ambedkar University Delhi, Delhi-110006, India

* Corresponding author: Pranay Goswami

Received  April 2019 Revised  July 2019 Published  July 2021 Early access  November 2019

Diabetes is one of the burning issues of the whole world. It effected the world population rapidly. According to the WHO approx 415 million people are living with diabetes in the world and this figure is expected to rise up to 642 million by 2040. World various organizations raise their voice against the dire facts about the increasing graph of diabetes and its complicated patients. In this paper authors define the fractional model of diabetes and its complications involving to fractional operator with exponential kernel. The authors discuss the existence of the solution by using fixed point theorem and also show the uniqueness of the solution. To validate the model's efficiency the authors provided numerical simulation by using HPM. To strengthen the model the results have been presented in the form of graphs.

Citation: Ravi Shanker Dubey, Pranay Goswami. Mathematical model of diabetes and its complication involving fractional operator without singular kernal. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2151-2161. doi: 10.3934/dcdss.2020144
References:
[1]

K. G. M. M. Alberti and Z. Z. Paul, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus, Provisional Report of A WHO Consultation, Diabetic Medicine, 15 (1998), 539–553. Google Scholar

[2]

Diet, Nutrition and the Prevention of Chronic Diseases: Report of A Joint WHO/FAO Expert Consultation, Vol. 916, World Health Organization, 2003. Google Scholar

[3]

Global action plan for the prevention and control of noncommunicable diseases 2013-2020, World Health Organization, [J]. 2013. Google Scholar

[4]

Global recommendations on physical activity for health[M], World Health Organization, 2010. Google Scholar

[5]

Global report on diseases, Geneva, World Health Organization, 2016. Google Scholar

[6]

Global status report on non communicable diseases 2015, Geneva, World Health Organization, 2015. Google Scholar

[7]

DIAMOND Project Group, Incidence and trends of childhood type 1 diabetes worldwide 1990-1999[J], Diabetic Medicine, 23 (2006), 857–866. Google Scholar

[8]

NCD risk factor collaboration (NCD-RisC), Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4*4 million participants, Lancet 2016, 387 (2016), 1513-1530. doi: 10.1016/S0140-6736(16)00618-8.  Google Scholar

[9]

WHO Guideline: Sugars intake in adults and children, Geneva: World Health Organization, 2015. Google Scholar

[10]

B. S. AlkahtaniO. J. AlkahtaniR. S. Dubey and P. Goswami, Solution of fractional oxygen diffusion problem having without singular kernel, J. Nonlinear Sci. Appl., 10 (2017), 299-307.  doi: 10.22436/jnsa.010.01.28.  Google Scholar

[11]

B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The Solution of Modified Fractional Bergmans Minimal Blood Glucose-Insulin Model, Entropy, 19 (2017), 114. doi: 10.3390/e19050114.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, Analysis of non- homogenous heat model with new trend of derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[13]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.  Google Scholar

[14]

A. Boutayeb, E. H. Twizell, K. Achouayb and A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomed. Eng. Online, 2 (2004), Article ID 20. Google Scholar

[15]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, part II, Geophy. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[16]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 73-85.   Google Scholar

[17]

V. B. L. Chaurasia and R. S. Dubey, Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag-Leffler-type function, ISRN Appl. Math., 2011 (2011), Art. ID 682381, 9 pp. doi: 10.5402/2011/682381.  Google Scholar

[18]

V. B. L. ChaurasiaR. S. Dubey and F. B. M. Belgacem, Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, Math. Eng., Sci. Aerospace, 3 (2012), 1-10.   Google Scholar

[19]

A. Debbouche and D. F. M. Torres, Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions, Appl. Math. Comput., 243 (2014), 161-175.  doi: 10.1016/j.amc.2014.05.087.  Google Scholar

[20]

R. S. Dubey, B. S. T. Alkahtani and A. Atangana, Analytical solution of space-time fractional fokker plank equation by homotopy perturbation sumudu Transform method, Math. Prob. Eng., 2015, Art. ID 780929, 7 pp. doi: 10.1155/2015/780929.  Google Scholar

[21]

R. S. Dubey and P. Goswami, Analytical solution of the nonlinear diffusion equation, European Phy. J. Plus, 133 (2018). doi: 10.1140/epjp/i2018-12010-6.  Google Scholar

[22]

R. S. DubeyF. B. M. Belgacem and P. Goswami, Homotopy perturbation approximate solutions for Bergmans minimal blood glucose-insulin model, Fractal Geo. and Nonlinear Anal. Medicine Biology, 2 (2016), 1-6.   Google Scholar

[23]

R. S. DubeyP. Goswami and F. B. M. Belgacem, Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms, J. Frac. Cal. Appl., 5 (2014), 52-58.   Google Scholar

[24]

T. HarderE. RodekampK. SchellongJ. W. Dudenhausen and A. Plagemann, Birth weight and subsequent risk of type 2 diabetes: A meta-analysis, Amer. J. Epidemiology, 165 (2007), 849-857.  doi: 10.1093/aje/kwk071.  Google Scholar

[25]

I. W. JohnssonB. HaglundF. Ahlsson and J. Gustafsson, A high birth weight is associated with increased risk of type 2 diabetes and obesity, Pediatric Obesity, 10 (2015), 77-83.  doi: 10.1111/ijpo.230.  Google Scholar

[26]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[27]

J. Losada and J. J. Nieto, Properties of the new fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 87-92.   Google Scholar

[28]

J. LuoRo ssouwE. TongG. A. GiovinoC. C. Lee and C. Chen, Smoking and diabetes: Does the increased risk ever go away?, Amer. J. Epidemiology, 178 (2013), 937-945.   Google Scholar

[29]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.  Google Scholar

[30]

L. Morenga Te, S. Mallard and J. Mann, Dietary sugars and body weight: Systematic review and meta analyses of randomised controlled trials and cohort studies, British Medical J., 2013, Article ID 346, e7492. doi: 10.1136/bmj.e7492.  Google Scholar

[31] I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[32]

H. M. SrivastavaR. S. Dubey and M. Jain, A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42 (2019), 4570-4583.  doi: 10.1002/mma.5681.  Google Scholar

[33]

P. H. WhincupS. J. Kaye and C. G. Owen, Birth weight and risk of type 2 diabetes: A systematic review, J. Amer. Medical Asso., 300 (2008), 2886-2897.   Google Scholar

[34]

D. Whiting, U. Nigel and R. Gojka, Diabetes: Equity and Social Determinants, Equity, social determinants and public health programmes, 2010. Google Scholar

[35]

C. WilliP. BodenmannW. A. GhaliP. D. Faris and J. Cornuz, Active smoking and the risk of type 2 diabetes: A systematic review and meta-analysis, J. Amer. Medical Asso., 298 (2007), 2654-2664.  doi: 10.1001/jama.298.22.2654.  Google Scholar

[36]

X. J. YangJ. A. T. MachadoC. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Numer. Sim., 47 (2017), 200-206.  doi: 10.1016/j.cnsns.2016.11.017.  Google Scholar

[37]

A. M. Yang, Y. Z. Zhang, C. Cattani, G. N. Xie, M. M. Rashidi, Y. J. Zhou and X. J. yang, Application of local fractional series expansion method to solve KleinGordon equations on Cantor sets, Abstract Appl. Anal., 2014, Art. ID 372741, 6 pp. doi: 10.1155/2014/372741.  Google Scholar

show all references

References:
[1]

K. G. M. M. Alberti and Z. Z. Paul, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus, Provisional Report of A WHO Consultation, Diabetic Medicine, 15 (1998), 539–553. Google Scholar

[2]

Diet, Nutrition and the Prevention of Chronic Diseases: Report of A Joint WHO/FAO Expert Consultation, Vol. 916, World Health Organization, 2003. Google Scholar

[3]

Global action plan for the prevention and control of noncommunicable diseases 2013-2020, World Health Organization, [J]. 2013. Google Scholar

[4]

Global recommendations on physical activity for health[M], World Health Organization, 2010. Google Scholar

[5]

Global report on diseases, Geneva, World Health Organization, 2016. Google Scholar

[6]

Global status report on non communicable diseases 2015, Geneva, World Health Organization, 2015. Google Scholar

[7]

DIAMOND Project Group, Incidence and trends of childhood type 1 diabetes worldwide 1990-1999[J], Diabetic Medicine, 23 (2006), 857–866. Google Scholar

[8]

NCD risk factor collaboration (NCD-RisC), Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4*4 million participants, Lancet 2016, 387 (2016), 1513-1530. doi: 10.1016/S0140-6736(16)00618-8.  Google Scholar

[9]

WHO Guideline: Sugars intake in adults and children, Geneva: World Health Organization, 2015. Google Scholar

[10]

B. S. AlkahtaniO. J. AlkahtaniR. S. Dubey and P. Goswami, Solution of fractional oxygen diffusion problem having without singular kernel, J. Nonlinear Sci. Appl., 10 (2017), 299-307.  doi: 10.22436/jnsa.010.01.28.  Google Scholar

[11]

B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The Solution of Modified Fractional Bergmans Minimal Blood Glucose-Insulin Model, Entropy, 19 (2017), 114. doi: 10.3390/e19050114.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, Analysis of non- homogenous heat model with new trend of derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[13]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.  Google Scholar

[14]

A. Boutayeb, E. H. Twizell, K. Achouayb and A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomed. Eng. Online, 2 (2004), Article ID 20. Google Scholar

[15]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, part II, Geophy. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[16]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 73-85.   Google Scholar

[17]

V. B. L. Chaurasia and R. S. Dubey, Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag-Leffler-type function, ISRN Appl. Math., 2011 (2011), Art. ID 682381, 9 pp. doi: 10.5402/2011/682381.  Google Scholar

[18]

V. B. L. ChaurasiaR. S. Dubey and F. B. M. Belgacem, Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, Math. Eng., Sci. Aerospace, 3 (2012), 1-10.   Google Scholar

[19]

A. Debbouche and D. F. M. Torres, Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions, Appl. Math. Comput., 243 (2014), 161-175.  doi: 10.1016/j.amc.2014.05.087.  Google Scholar

[20]

R. S. Dubey, B. S. T. Alkahtani and A. Atangana, Analytical solution of space-time fractional fokker plank equation by homotopy perturbation sumudu Transform method, Math. Prob. Eng., 2015, Art. ID 780929, 7 pp. doi: 10.1155/2015/780929.  Google Scholar

[21]

R. S. Dubey and P. Goswami, Analytical solution of the nonlinear diffusion equation, European Phy. J. Plus, 133 (2018). doi: 10.1140/epjp/i2018-12010-6.  Google Scholar

[22]

R. S. DubeyF. B. M. Belgacem and P. Goswami, Homotopy perturbation approximate solutions for Bergmans minimal blood glucose-insulin model, Fractal Geo. and Nonlinear Anal. Medicine Biology, 2 (2016), 1-6.   Google Scholar

[23]

R. S. DubeyP. Goswami and F. B. M. Belgacem, Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms, J. Frac. Cal. Appl., 5 (2014), 52-58.   Google Scholar

[24]

T. HarderE. RodekampK. SchellongJ. W. Dudenhausen and A. Plagemann, Birth weight and subsequent risk of type 2 diabetes: A meta-analysis, Amer. J. Epidemiology, 165 (2007), 849-857.  doi: 10.1093/aje/kwk071.  Google Scholar

[25]

I. W. JohnssonB. HaglundF. Ahlsson and J. Gustafsson, A high birth weight is associated with increased risk of type 2 diabetes and obesity, Pediatric Obesity, 10 (2015), 77-83.  doi: 10.1111/ijpo.230.  Google Scholar

[26]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[27]

J. Losada and J. J. Nieto, Properties of the new fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 87-92.   Google Scholar

[28]

J. LuoRo ssouwE. TongG. A. GiovinoC. C. Lee and C. Chen, Smoking and diabetes: Does the increased risk ever go away?, Amer. J. Epidemiology, 178 (2013), 937-945.   Google Scholar

[29]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.  Google Scholar

[30]

L. Morenga Te, S. Mallard and J. Mann, Dietary sugars and body weight: Systematic review and meta analyses of randomised controlled trials and cohort studies, British Medical J., 2013, Article ID 346, e7492. doi: 10.1136/bmj.e7492.  Google Scholar

[31] I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[32]

H. M. SrivastavaR. S. Dubey and M. Jain, A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42 (2019), 4570-4583.  doi: 10.1002/mma.5681.  Google Scholar

[33]

P. H. WhincupS. J. Kaye and C. G. Owen, Birth weight and risk of type 2 diabetes: A systematic review, J. Amer. Medical Asso., 300 (2008), 2886-2897.   Google Scholar

[34]

D. Whiting, U. Nigel and R. Gojka, Diabetes: Equity and Social Determinants, Equity, social determinants and public health programmes, 2010. Google Scholar

[35]

C. WilliP. BodenmannW. A. GhaliP. D. Faris and J. Cornuz, Active smoking and the risk of type 2 diabetes: A systematic review and meta-analysis, J. Amer. Medical Asso., 298 (2007), 2654-2664.  doi: 10.1001/jama.298.22.2654.  Google Scholar

[36]

X. J. YangJ. A. T. MachadoC. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Numer. Sim., 47 (2017), 200-206.  doi: 10.1016/j.cnsns.2016.11.017.  Google Scholar

[37]

A. M. Yang, Y. Z. Zhang, C. Cattani, G. N. Xie, M. M. Rashidi, Y. J. Zhou and X. J. yang, Application of local fractional series expansion method to solve KleinGordon equations on Cantor sets, Abstract Appl. Anal., 2014, Art. ID 372741, 6 pp. doi: 10.1155/2014/372741.  Google Scholar

Figure 1.  Flow Chart
Figure 2.  Represents for the behavior of the solution C(t), with respect to t for different values of other perimeter defined above
Figure 3.  Represents for the behavior of the solution E(t), with respect to t for different values of other perimeter defined above
Table 1.  Table-1
A(t) The incidence of Diabetes Mellitus
B(t) Number of person having diabetics without complications
C(t) Number of person having diabetics with complications
E(t) Size of population of diabetics at time $ t $
$ \delta $ The probability of a person having diabetic and developing complications
$ \varepsilon $ Natural rate of mortality
$ \lambda $ Rate of complications are recovered
$ \upsilon $ Rate of diabetic patients having complication and become severely disabled
$ \mu $ Rate of mortality due to diabetic complications
A(t) The incidence of Diabetes Mellitus
B(t) Number of person having diabetics without complications
C(t) Number of person having diabetics with complications
E(t) Size of population of diabetics at time $ t $
$ \delta $ The probability of a person having diabetic and developing complications
$ \varepsilon $ Natural rate of mortality
$ \lambda $ Rate of complications are recovered
$ \upsilon $ Rate of diabetic patients having complication and become severely disabled
$ \mu $ Rate of mortality due to diabetic complications
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[3]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[4]

M. M. El-Dessoky, Muhammad Altaf Khan. Application of Caputo-Fabrizio derivative to a cancer model with unknown parameters. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3557-3575. doi: 10.3934/dcdss.2020429

[5]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[6]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[7]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[8]

Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021182

[9]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[10]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[11]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021012

[12]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[13]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[14]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[15]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[16]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[17]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049

[18]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[19]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[20]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (447)
  • HTML views (926)
  • Cited by (3)

Other articles
by authors

[Back to Top]