doi: 10.3934/dcdss.2020144

Mathematical model of diabetes and its complication involving fractional operator without singular kernal

1. 

Departement of Mathematics, Amity School Of Applied Sciences, Amity University Rajasthan, Jaipur-303002, India

2. 

School of Liberal Studies, Ambedkar University Delhi, Delhi-110006, India

* Corresponding author: Pranay Goswami

Received  April 2019 Revised  July 2019 Published  November 2019

Diabetes is one of the burning issues of the whole world. It effected the world population rapidly. According to the WHO approx 415 million people are living with diabetes in the world and this figure is expected to rise up to 642 million by 2040. World various organizations raise their voice against the dire facts about the increasing graph of diabetes and its complicated patients. In this paper authors define the fractional model of diabetes and its complications involving to fractional operator with exponential kernel. The authors discuss the existence of the solution by using fixed point theorem and also show the uniqueness of the solution. To validate the model's efficiency the authors provided numerical simulation by using HPM. To strengthen the model the results have been presented in the form of graphs.

Citation: Ravi Shanker Dubey, Pranay Goswami. Mathematical model of diabetes and its complication involving fractional operator without singular kernal. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020144
References:
[1]

K. G. M. M. Alberti and Z. Z. Paul, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus, Provisional Report of A WHO Consultation, Diabetic Medicine, 15 (1998), 539–553. Google Scholar

[2]

Diet, Nutrition and the Prevention of Chronic Diseases: Report of A Joint WHO/FAO Expert Consultation, Vol. 916, World Health Organization, 2003. Google Scholar

[3]

Global action plan for the prevention and control of noncommunicable diseases 2013-2020, World Health Organization, [J]. 2013. Google Scholar

[4]

Global recommendations on physical activity for health[M], World Health Organization, 2010. Google Scholar

[5]

Global report on diseases, Geneva, World Health Organization, 2016. Google Scholar

[6]

Global status report on non communicable diseases 2015, Geneva, World Health Organization, 2015. Google Scholar

[7]

DIAMOND Project Group, Incidence and trends of childhood type 1 diabetes worldwide 1990-1999[J], Diabetic Medicine, 23 (2006), 857–866. Google Scholar

[8]

NCD risk factor collaboration (NCD-RisC), Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4*4 million participants, Lancet 2016, 387 (2016), 1513-1530. doi: 10.1016/S0140-6736(16)00618-8.  Google Scholar

[9]

WHO Guideline: Sugars intake in adults and children, Geneva: World Health Organization, 2015. Google Scholar

[10]

B. S. AlkahtaniO. J. AlkahtaniR. S. Dubey and P. Goswami, Solution of fractional oxygen diffusion problem having without singular kernel, J. Nonlinear Sci. Appl., 10 (2017), 299-307.  doi: 10.22436/jnsa.010.01.28.  Google Scholar

[11]

B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The Solution of Modified Fractional Bergmans Minimal Blood Glucose-Insulin Model, Entropy, 19 (2017), 114. doi: 10.3390/e19050114.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, Analysis of non- homogenous heat model with new trend of derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[13]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.  Google Scholar

[14]

A. Boutayeb, E. H. Twizell, K. Achouayb and A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomed. Eng. Online, 2 (2004), Article ID 20. Google Scholar

[15]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, part II, Geophy. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[16]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 73-85.   Google Scholar

[17]

V. B. L. Chaurasia and R. S. Dubey, Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag-Leffler-type function, ISRN Appl. Math., 2011 (2011), Art. ID 682381, 9 pp. doi: 10.5402/2011/682381.  Google Scholar

[18]

V. B. L. ChaurasiaR. S. Dubey and F. B. M. Belgacem, Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, Math. Eng., Sci. Aerospace, 3 (2012), 1-10.   Google Scholar

[19]

A. Debbouche and D. F. M. Torres, Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions, Appl. Math. Comput., 243 (2014), 161-175.  doi: 10.1016/j.amc.2014.05.087.  Google Scholar

[20]

R. S. Dubey, B. S. T. Alkahtani and A. Atangana, Analytical solution of space-time fractional fokker plank equation by homotopy perturbation sumudu Transform method, Math. Prob. Eng., 2015, Art. ID 780929, 7 pp. doi: 10.1155/2015/780929.  Google Scholar

[21]

R. S. Dubey and P. Goswami, Analytical solution of the nonlinear diffusion equation, European Phy. J. Plus, 133 (2018). doi: 10.1140/epjp/i2018-12010-6.  Google Scholar

[22]

R. S. DubeyF. B. M. Belgacem and P. Goswami, Homotopy perturbation approximate solutions for Bergmans minimal blood glucose-insulin model, Fractal Geo. and Nonlinear Anal. Medicine Biology, 2 (2016), 1-6.   Google Scholar

[23]

R. S. DubeyP. Goswami and F. B. M. Belgacem, Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms, J. Frac. Cal. Appl., 5 (2014), 52-58.   Google Scholar

[24]

T. HarderE. RodekampK. SchellongJ. W. Dudenhausen and A. Plagemann, Birth weight and subsequent risk of type 2 diabetes: A meta-analysis, Amer. J. Epidemiology, 165 (2007), 849-857.  doi: 10.1093/aje/kwk071.  Google Scholar

[25]

I. W. JohnssonB. HaglundF. Ahlsson and J. Gustafsson, A high birth weight is associated with increased risk of type 2 diabetes and obesity, Pediatric Obesity, 10 (2015), 77-83.  doi: 10.1111/ijpo.230.  Google Scholar

[26]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[27]

J. Losada and J. J. Nieto, Properties of the new fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 87-92.   Google Scholar

[28]

J. LuoRo ssouwE. TongG. A. GiovinoC. C. Lee and C. Chen, Smoking and diabetes: Does the increased risk ever go away?, Amer. J. Epidemiology, 178 (2013), 937-945.   Google Scholar

[29]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.  Google Scholar

[30]

L. Morenga Te, S. Mallard and J. Mann, Dietary sugars and body weight: Systematic review and meta analyses of randomised controlled trials and cohort studies, British Medical J., 2013, Article ID 346, e7492. doi: 10.1136/bmj.e7492.  Google Scholar

[31] I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[32]

H. M. SrivastavaR. S. Dubey and M. Jain, A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42 (2019), 4570-4583.  doi: 10.1002/mma.5681.  Google Scholar

[33]

P. H. WhincupS. J. Kaye and C. G. Owen, Birth weight and risk of type 2 diabetes: A systematic review, J. Amer. Medical Asso., 300 (2008), 2886-2897.   Google Scholar

[34]

D. Whiting, U. Nigel and R. Gojka, Diabetes: Equity and Social Determinants, Equity, social determinants and public health programmes, 2010. Google Scholar

[35]

C. WilliP. BodenmannW. A. GhaliP. D. Faris and J. Cornuz, Active smoking and the risk of type 2 diabetes: A systematic review and meta-analysis, J. Amer. Medical Asso., 298 (2007), 2654-2664.  doi: 10.1001/jama.298.22.2654.  Google Scholar

[36]

X. J. YangJ. A. T. MachadoC. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Numer. Sim., 47 (2017), 200-206.  doi: 10.1016/j.cnsns.2016.11.017.  Google Scholar

[37]

A. M. Yang, Y. Z. Zhang, C. Cattani, G. N. Xie, M. M. Rashidi, Y. J. Zhou and X. J. yang, Application of local fractional series expansion method to solve KleinGordon equations on Cantor sets, Abstract Appl. Anal., 2014, Art. ID 372741, 6 pp. doi: 10.1155/2014/372741.  Google Scholar

show all references

References:
[1]

K. G. M. M. Alberti and Z. Z. Paul, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus, Provisional Report of A WHO Consultation, Diabetic Medicine, 15 (1998), 539–553. Google Scholar

[2]

Diet, Nutrition and the Prevention of Chronic Diseases: Report of A Joint WHO/FAO Expert Consultation, Vol. 916, World Health Organization, 2003. Google Scholar

[3]

Global action plan for the prevention and control of noncommunicable diseases 2013-2020, World Health Organization, [J]. 2013. Google Scholar

[4]

Global recommendations on physical activity for health[M], World Health Organization, 2010. Google Scholar

[5]

Global report on diseases, Geneva, World Health Organization, 2016. Google Scholar

[6]

Global status report on non communicable diseases 2015, Geneva, World Health Organization, 2015. Google Scholar

[7]

DIAMOND Project Group, Incidence and trends of childhood type 1 diabetes worldwide 1990-1999[J], Diabetic Medicine, 23 (2006), 857–866. Google Scholar

[8]

NCD risk factor collaboration (NCD-RisC), Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4*4 million participants, Lancet 2016, 387 (2016), 1513-1530. doi: 10.1016/S0140-6736(16)00618-8.  Google Scholar

[9]

WHO Guideline: Sugars intake in adults and children, Geneva: World Health Organization, 2015. Google Scholar

[10]

B. S. AlkahtaniO. J. AlkahtaniR. S. Dubey and P. Goswami, Solution of fractional oxygen diffusion problem having without singular kernel, J. Nonlinear Sci. Appl., 10 (2017), 299-307.  doi: 10.22436/jnsa.010.01.28.  Google Scholar

[11]

B. S. Alkahtani, O. J. Algahtani, R. S. Dubey and P. Goswami, The Solution of Modified Fractional Bergmans Minimal Blood Glucose-Insulin Model, Entropy, 19 (2017), 114. doi: 10.3390/e19050114.  Google Scholar

[12]

A. Atangana and B. S. T. Alkahtani, Analysis of non- homogenous heat model with new trend of derivative with fractional order, Chaos Solitons Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[13]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.  Google Scholar

[14]

A. Boutayeb, E. H. Twizell, K. Achouayb and A. Chetouani, A mathematical model for the burden of diabetes and its complications, Biomed. Eng. Online, 2 (2004), Article ID 20. Google Scholar

[15]

M. Caputo, Linear models of dissipation whose Q is almost frequency independent, part II, Geophy. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x.  Google Scholar

[16]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 73-85.   Google Scholar

[17]

V. B. L. Chaurasia and R. S. Dubey, Analytical solution for the differential equation containing generalized fractional derivative operators and Mittag-Leffler-type function, ISRN Appl. Math., 2011 (2011), Art. ID 682381, 9 pp. doi: 10.5402/2011/682381.  Google Scholar

[18]

V. B. L. ChaurasiaR. S. Dubey and F. B. M. Belgacem, Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, Math. Eng., Sci. Aerospace, 3 (2012), 1-10.   Google Scholar

[19]

A. Debbouche and D. F. M. Torres, Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions, Appl. Math. Comput., 243 (2014), 161-175.  doi: 10.1016/j.amc.2014.05.087.  Google Scholar

[20]

R. S. Dubey, B. S. T. Alkahtani and A. Atangana, Analytical solution of space-time fractional fokker plank equation by homotopy perturbation sumudu Transform method, Math. Prob. Eng., 2015, Art. ID 780929, 7 pp. doi: 10.1155/2015/780929.  Google Scholar

[21]

R. S. Dubey and P. Goswami, Analytical solution of the nonlinear diffusion equation, European Phy. J. Plus, 133 (2018). doi: 10.1140/epjp/i2018-12010-6.  Google Scholar

[22]

R. S. DubeyF. B. M. Belgacem and P. Goswami, Homotopy perturbation approximate solutions for Bergmans minimal blood glucose-insulin model, Fractal Geo. and Nonlinear Anal. Medicine Biology, 2 (2016), 1-6.   Google Scholar

[23]

R. S. DubeyP. Goswami and F. B. M. Belgacem, Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms, J. Frac. Cal. Appl., 5 (2014), 52-58.   Google Scholar

[24]

T. HarderE. RodekampK. SchellongJ. W. Dudenhausen and A. Plagemann, Birth weight and subsequent risk of type 2 diabetes: A meta-analysis, Amer. J. Epidemiology, 165 (2007), 849-857.  doi: 10.1093/aje/kwk071.  Google Scholar

[25]

I. W. JohnssonB. HaglundF. Ahlsson and J. Gustafsson, A high birth weight is associated with increased risk of type 2 diabetes and obesity, Pediatric Obesity, 10 (2015), 77-83.  doi: 10.1111/ijpo.230.  Google Scholar

[26]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[27]

J. Losada and J. J. Nieto, Properties of the new fractional derivative without singular Kernel, Prog. Fract. Diff. Appl., 1 (2015), 87-92.   Google Scholar

[28]

J. LuoRo ssouwE. TongG. A. GiovinoC. C. Lee and C. Chen, Smoking and diabetes: Does the increased risk ever go away?, Amer. J. Epidemiology, 178 (2013), 937-945.   Google Scholar

[29]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.  Google Scholar

[30]

L. Morenga Te, S. Mallard and J. Mann, Dietary sugars and body weight: Systematic review and meta analyses of randomised controlled trials and cohort studies, British Medical J., 2013, Article ID 346, e7492. doi: 10.1136/bmj.e7492.  Google Scholar

[31] I. Podlubny, Fractional Differential Equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[32]

H. M. SrivastavaR. S. Dubey and M. Jain, A study of the fractional-order mathematical model of diabetes and its resulting complications, Math. Methods Appl. Sci., 42 (2019), 4570-4583.  doi: 10.1002/mma.5681.  Google Scholar

[33]

P. H. WhincupS. J. Kaye and C. G. Owen, Birth weight and risk of type 2 diabetes: A systematic review, J. Amer. Medical Asso., 300 (2008), 2886-2897.   Google Scholar

[34]

D. Whiting, U. Nigel and R. Gojka, Diabetes: Equity and Social Determinants, Equity, social determinants and public health programmes, 2010. Google Scholar

[35]

C. WilliP. BodenmannW. A. GhaliP. D. Faris and J. Cornuz, Active smoking and the risk of type 2 diabetes: A systematic review and meta-analysis, J. Amer. Medical Asso., 298 (2007), 2654-2664.  doi: 10.1001/jama.298.22.2654.  Google Scholar

[36]

X. J. YangJ. A. T. MachadoC. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Numer. Sim., 47 (2017), 200-206.  doi: 10.1016/j.cnsns.2016.11.017.  Google Scholar

[37]

A. M. Yang, Y. Z. Zhang, C. Cattani, G. N. Xie, M. M. Rashidi, Y. J. Zhou and X. J. yang, Application of local fractional series expansion method to solve KleinGordon equations on Cantor sets, Abstract Appl. Anal., 2014, Art. ID 372741, 6 pp. doi: 10.1155/2014/372741.  Google Scholar

Figure 1.  Flow Chart
Figure 2.  Represents for the behavior of the solution C(t), with respect to t for different values of other perimeter defined above
Figure 3.  Represents for the behavior of the solution E(t), with respect to t for different values of other perimeter defined above
Table 1.  Table-1
A(t) The incidence of Diabetes Mellitus
B(t) Number of person having diabetics without complications
C(t) Number of person having diabetics with complications
E(t) Size of population of diabetics at time $ t $
$ \delta $ The probability of a person having diabetic and developing complications
$ \varepsilon $ Natural rate of mortality
$ \lambda $ Rate of complications are recovered
$ \upsilon $ Rate of diabetic patients having complication and become severely disabled
$ \mu $ Rate of mortality due to diabetic complications
A(t) The incidence of Diabetes Mellitus
B(t) Number of person having diabetics without complications
C(t) Number of person having diabetics with complications
E(t) Size of population of diabetics at time $ t $
$ \delta $ The probability of a person having diabetic and developing complications
$ \varepsilon $ Natural rate of mortality
$ \lambda $ Rate of complications are recovered
$ \upsilon $ Rate of diabetic patients having complication and become severely disabled
$ \mu $ Rate of mortality due to diabetic complications
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[2]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[3]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1017-1029. doi: 10.3934/dcdss.2020060

[4]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[5]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[6]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[7]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 853-865. doi: 10.3934/dcdss.2020049

[8]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[9]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[10]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[11]

Ndolane Sene. Mittag-Leffler input stability of fractional differential equations and its applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 867-880. doi: 10.3934/dcdss.2020050

[12]

Ndolane Sene. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020173

[13]

Karthikeyan Rajagopal, Serdar Cicek, Akif Akgul, Sajad Jafari, Anitha Karthikeyan. Chaotic cuttlesh: king of camouage with self-excited and hidden flows, its fractional-order form and communication designs with fractional form. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1001-1013. doi: 10.3934/dcdsb.2019205

[14]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[15]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[16]

Stefan Koch, Andreas Neuenkirch. The Mandelbrot-van Ness fractional Brownian motion is infinitely differentiable with respect to its Hurst parameter. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3865-3880. doi: 10.3934/dcdsb.2018334

[17]

Roberto Avanzi, Nicolas Thériault. A filtering method for the hyperelliptic curve index calculus and its analysis. Advances in Mathematics of Communications, 2010, 4 (2) : 189-213. doi: 10.3934/amc.2010.4.189

[18]

Serena Dipierro, Enrico Valdinoci. On a fractional harmonic replacement. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3377-3392. doi: 10.3934/dcds.2015.35.3377

[19]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[20]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (19)
  • HTML views (49)
  • Cited by (0)

Other articles
by authors

[Back to Top]