• Previous Article
    Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
  • DCDS-S Home
  • This Issue
  • Next Article
    A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics
July  2021, 14(7): 2199-2212. doi: 10.3934/dcdss.2020145

System response of an alcoholism model under the effect of immigration via non-singular kernel derivative

1. 

Department of Mathematics, Balıkesir University, Balıkesir 10145, Turkey

2. 

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, 75000, Vietnam

3. 

Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan

4. 

Department of Sciences, École normale supérieure, Moulay Ismail University of Meknes, Meknes 50000, Morocco

* Corresponding author: Fırat Evirgen.

Received  April 2019 Revised  November 2020 Published  July 2021 Early access  May 2021

In this study, we aim to comprehensively investigate a drinking model connected to immigration in terms of Atangana-Baleanu derivative in Caputo type. To do this, we firstly extend the model describing drinking model by changing the derivative with time fractional derivative having Mittag-Leffler kernel. The existence and uniqueness of the drinking model solutions together with the stability analysis is shown by the help of Banach fixed point theorem. The special solution of the model is investigated using the Sumudu transformation and then, we present some numerical simulations for the different fractional orders to emphasize the effectiveness of the used derivative.

Citation: Fırat Evirgen, Sümeyra Uçar, Necati Özdemir, Zakia Hammouch. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2199-2212. doi: 10.3934/dcdss.2020145
References:
[1]

B. S. T. Alkahtani, I. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Advances in Mechanical Engineering, 9 (2017). doi: 10.1177/1687814017705566.

[2]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and applications to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.

[4]

A. Atangana and I. Koca, New direction in fractional differentiation, Mathematics in Natural Science, 1 (2017), 18-25.  doi: 10.22436/mns.01.01.02.

[5]

D. Baleanu and A. Mendes Lopes, Handbook of Fractional Calculus with Applications, Volume 7-8, De Gruyter, 2019. doi: 10.3389/978-2-88945-958-2.

[6]

F. B. M. Belgacem, R. Silambarasan, H. Zakia and T. Mekkaoui, New and extended applications of the natural and sumudu transforms: Fractional diffusion and stokes fluid flow realms, in Advances in Real and Complex Analysis with Applications (eds. M. Ruzhansky, Y. Cho, P. Agarwal and I. Area), Birkhäuser, (2017), 107–120. doi: 10.1007/978-981-10-4337-6_6.

[7]

H. BulutD. KumarJ. SinghR. Swroop and H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Mathematics in Natural Science, 2 (2018), 33-43.  doi: 10.22436/mns.02.01.04.

[8]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404.  doi: 10.3934/mbe.2004.1.361.

[9]

M. A. Dokuyucu and E. Celik, Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model, New Trends Math. Sci., 4 (2016), 204-211. doi: 10.20852/ntmsci.2016318931.

[10]

F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016), 75-83.  doi: 10.11121/ijocta.01.2016.00317.

[11]

F. Evirgen and N. Özdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, J. Comput. Nonlinear Dynam., 6 (2011), 021003. doi: 10.1115/1.4002393.

[12]

F. Evirgen and N. Özdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, in Fractional Dynamics and Control (eds. D. Baleanu, J. Machado and A. Luo), Springer, (2012), 145–155. doi: 10.1007/978-1-4614-0457-6_12.

[13]

J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Phys. A, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.

[14]

J. F. Gómez-Aguilar and A. Atangana, Fractional derivatives with the power-law and the Mittag-Leffler kernel applied to the nonlinear Baggs-Freedman model, Fractal and Fractional, 2 (2018), 10. doi: 10.3390/fractalfract2010010.

[15]

J. F. Gómez-AguilarA. Atangana and V. F. Morales-Delgado, Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives, International Journal of Circuit Theory and Applications, 45 (2017), 1514-1533. 

[16]

H.-F. Huo and L.-X. Feng, Global stability for an HIV/AIDS epidemic model with different latent stages and treatment, Appl. Math. Model., 37 (2013), 1480-1489.  doi: 10.1016/j.apm.2012.04.013.

[17]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.

[18]

İ. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, Int. J. Optim. Control. Theor. Appl. IJOCTA, 8 (2018), 17-25.  doi: 10.11121/ijocta.01.2018.00532.

[19]

I. Koca, Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators, Eur. Phys. J. Plus, 133 (2018), 100. doi: 10.1140/epjp/i2018-11949-4.

[20]

Y. KoçakM. A. Dokuyucu and E. Çelik, Well-posedness of optimal control problem for the Schrodinger equations with complex potential, Int. J. Math. Comput., 26 (2015), 11-16. 

[21] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.
[22]

G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath., 5 (2012), 1250005. doi: 10.1142/S1793524511001453.

[23]

Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equation of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27-34.  doi: 10.1515/IJNSNS.2006.7.1.27.

[24]

N. ÖzdemirY. PovstenkoD. Avci and B. B. İskender, Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation, Journal of Thermal Stresses, 37 (2014), 969-980.  doi: 10.1080/01495739.2014.912937.

[25]

N. Özdemir and M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate Padé approximation, Acta Physica Polonica A, 132 (2017), 1050-1053.  doi: 10.12693/APhysPolA.132.1050.

[26]

Y. PovstenkoD. AvciB. B. İ. Eroǧlu and N. Özdemir, Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain, Thermal Science, 21 (2017), 19-28.  doi: 10.2298/TSCI160421236P.

[27]

D. G. Prakasha, P. Veeresha and H. M. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, The European Physical Journal Plus, 134 (2019), 11p. doi: 10.1140/epjp/i2019-12590-5.

[28]

G. ur RahmanR. P. AgarwalL. Liu and A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal. Real World Appl., 43 (2018), 96-120.  doi: 10.1016/j.nonrwa.2018.02.006.

[29]

J. SinghD. KumaraZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.

[30]

D. L. SutharS. D. Purohit and R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Mathematics in Natural Science, 1 (2017), 26-32.  doi: 10.22436/mns.01.01.03.

[31]

K. A. Touchent, Z. Hammouch, T. Mekkaoui and F. B. M. Belgacem, Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal Fract., 2 (2018), 22p. doi: 10.3390/fractalfract2030022.

[32]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. doi: 10.1140/epjp/i2017-11717-0.

[33]

E. Ucar, N. Özdemir and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 12 pp. doi: 10.1051/mmnp/2019002.

[34]

S. UçarE. UçarN. Özdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solitons Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.

[35]

H. XiangC.-C. Zhu and H.-F. Huo, Modelling the effect of immigration on drinking behaviour, J. Biol. Dyn., 11 (2017), 275-298.  doi: 10.1080/17513758.2017.1337243.

[36]

M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Science, 22 (2018), 185-194.  doi: 10.2298/TSCI170804285Y.

show all references

References:
[1]

B. S. T. Alkahtani, I. Koca and A. Atangana, Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function, Advances in Mechanical Engineering, 9 (2017). doi: 10.1177/1687814017705566.

[2]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and applications to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.

[4]

A. Atangana and I. Koca, New direction in fractional differentiation, Mathematics in Natural Science, 1 (2017), 18-25.  doi: 10.22436/mns.01.01.02.

[5]

D. Baleanu and A. Mendes Lopes, Handbook of Fractional Calculus with Applications, Volume 7-8, De Gruyter, 2019. doi: 10.3389/978-2-88945-958-2.

[6]

F. B. M. Belgacem, R. Silambarasan, H. Zakia and T. Mekkaoui, New and extended applications of the natural and sumudu transforms: Fractional diffusion and stokes fluid flow realms, in Advances in Real and Complex Analysis with Applications (eds. M. Ruzhansky, Y. Cho, P. Agarwal and I. Area), Birkhäuser, (2017), 107–120. doi: 10.1007/978-981-10-4337-6_6.

[7]

H. BulutD. KumarJ. SinghR. Swroop and H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Mathematics in Natural Science, 2 (2018), 33-43.  doi: 10.22436/mns.02.01.04.

[8]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404.  doi: 10.3934/mbe.2004.1.361.

[9]

M. A. Dokuyucu and E. Celik, Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model, New Trends Math. Sci., 4 (2016), 204-211. doi: 10.20852/ntmsci.2016318931.

[10]

F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016), 75-83.  doi: 10.11121/ijocta.01.2016.00317.

[11]

F. Evirgen and N. Özdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, J. Comput. Nonlinear Dynam., 6 (2011), 021003. doi: 10.1115/1.4002393.

[12]

F. Evirgen and N. Özdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, in Fractional Dynamics and Control (eds. D. Baleanu, J. Machado and A. Luo), Springer, (2012), 145–155. doi: 10.1007/978-1-4614-0457-6_12.

[13]

J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Phys. A, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.

[14]

J. F. Gómez-Aguilar and A. Atangana, Fractional derivatives with the power-law and the Mittag-Leffler kernel applied to the nonlinear Baggs-Freedman model, Fractal and Fractional, 2 (2018), 10. doi: 10.3390/fractalfract2010010.

[15]

J. F. Gómez-AguilarA. Atangana and V. F. Morales-Delgado, Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives, International Journal of Circuit Theory and Applications, 45 (2017), 1514-1533. 

[16]

H.-F. Huo and L.-X. Feng, Global stability for an HIV/AIDS epidemic model with different latent stages and treatment, Appl. Math. Model., 37 (2013), 1480-1489.  doi: 10.1016/j.apm.2012.04.013.

[17]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos, Solitons Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.

[18]

İ. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, Int. J. Optim. Control. Theor. Appl. IJOCTA, 8 (2018), 17-25.  doi: 10.11121/ijocta.01.2018.00532.

[19]

I. Koca, Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators, Eur. Phys. J. Plus, 133 (2018), 100. doi: 10.1140/epjp/i2018-11949-4.

[20]

Y. KoçakM. A. Dokuyucu and E. Çelik, Well-posedness of optimal control problem for the Schrodinger equations with complex potential, Int. J. Math. Comput., 26 (2015), 11-16. 

[21] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.
[22]

G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath., 5 (2012), 1250005. doi: 10.1142/S1793524511001453.

[23]

Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equation of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27-34.  doi: 10.1515/IJNSNS.2006.7.1.27.

[24]

N. ÖzdemirY. PovstenkoD. Avci and B. B. İskender, Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation, Journal of Thermal Stresses, 37 (2014), 969-980.  doi: 10.1080/01495739.2014.912937.

[25]

N. Özdemir and M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate Padé approximation, Acta Physica Polonica A, 132 (2017), 1050-1053.  doi: 10.12693/APhysPolA.132.1050.

[26]

Y. PovstenkoD. AvciB. B. İ. Eroǧlu and N. Özdemir, Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain, Thermal Science, 21 (2017), 19-28.  doi: 10.2298/TSCI160421236P.

[27]

D. G. Prakasha, P. Veeresha and H. M. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, The European Physical Journal Plus, 134 (2019), 11p. doi: 10.1140/epjp/i2019-12590-5.

[28]

G. ur RahmanR. P. AgarwalL. Liu and A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal. Real World Appl., 43 (2018), 96-120.  doi: 10.1016/j.nonrwa.2018.02.006.

[29]

J. SinghD. KumaraZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.

[30]

D. L. SutharS. D. Purohit and R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Mathematics in Natural Science, 1 (2017), 26-32.  doi: 10.22436/mns.01.01.03.

[31]

K. A. Touchent, Z. Hammouch, T. Mekkaoui and F. B. M. Belgacem, Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal Fract., 2 (2018), 22p. doi: 10.3390/fractalfract2030022.

[32]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. doi: 10.1140/epjp/i2017-11717-0.

[33]

E. Ucar, N. Özdemir and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 12 pp. doi: 10.1051/mmnp/2019002.

[34]

S. UçarE. UçarN. Özdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solitons Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.

[35]

H. XiangC.-C. Zhu and H.-F. Huo, Modelling the effect of immigration on drinking behaviour, J. Biol. Dyn., 11 (2017), 275-298.  doi: 10.1080/17513758.2017.1337243.

[36]

M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Science, 22 (2018), 185-194.  doi: 10.2298/TSCI170804285Y.

Figure 1.  The transfer diagram of the alcoholism model under the effect of immigration
Figure 2.  System behavior of the fractional drinking model (5) with order $ \eta = 0.3 $ in respect to time $ t = 1 $ and $ t = 40 $
Figure 3.  System behavior of the fractional drinking model (5) with order $ \eta=0.5 $ in respect to time $ t=1 $ and $ t=40 $
Figure 4.  System behavior of the fractional drinking model (5) with order $ \eta = 0.7 $ in respect to time $ t = 1 $ and $ t = 40 $
Figure 5.  System behavior of the fractional drinking model (5) with order $ \eta = 0.9 $ in respect to time $ t = 1 $ and $ t = 40 $
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[2]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[3]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[4]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[5]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435

[6]

G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027

[7]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[9]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[10]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[11]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[12]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[13]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[14]

Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2571-2589. doi: 10.3934/dcdss.2020178

[15]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[16]

Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1

[17]

L. Bedin, Mark Thompson. Existence theory for a Poisson-Nernst-Planck model of electrophoresis. Communications on Pure and Applied Analysis, 2013, 12 (1) : 157-206. doi: 10.3934/cpaa.2013.12.157

[18]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[19]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[20]

Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (164)
  • HTML views (107)
  • Cited by (0)

[Back to Top]