# American Institute of Mathematical Sciences

• Previous Article
Melnikov analysis of the nonlocal nanobeam resting on fractional-order softening nonlinear viscoelastic foundations
• DCDS-S Home
• This Issue
• Next Article
A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics
July  2021, 14(7): 2199-2212. doi: 10.3934/dcdss.2020145

## System response of an alcoholism model under the effect of immigration via non-singular kernel derivative

 1 Department of Mathematics, Balıkesir University, Balıkesir 10145, Turkey 2 Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, 75000, Vietnam 3 Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan 4 Department of Sciences, École normale supérieure, Moulay Ismail University of Meknes, Meknes 50000, Morocco

* Corresponding author: Fırat Evirgen.

Received  April 2019 Revised  November 2020 Published  May 2021

In this study, we aim to comprehensively investigate a drinking model connected to immigration in terms of Atangana-Baleanu derivative in Caputo type. To do this, we firstly extend the model describing drinking model by changing the derivative with time fractional derivative having Mittag-Leffler kernel. The existence and uniqueness of the drinking model solutions together with the stability analysis is shown by the help of Banach fixed point theorem. The special solution of the model is investigated using the Sumudu transformation and then, we present some numerical simulations for the different fractional orders to emphasize the effectiveness of the used derivative.

Citation: Fırat Evirgen, Sümeyra Uçar, Necati Özdemir, Zakia Hammouch. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2199-2212. doi: 10.3934/dcdss.2020145
##### References:

show all references

##### References:
The transfer diagram of the alcoholism model under the effect of immigration
System behavior of the fractional drinking model (5) with order $\eta = 0.3$ in respect to time $t = 1$ and $t = 40$
System behavior of the fractional drinking model (5) with order $\eta=0.5$ in respect to time $t=1$ and $t=40$
System behavior of the fractional drinking model (5) with order $\eta = 0.7$ in respect to time $t = 1$ and $t = 40$
System behavior of the fractional drinking model (5) with order $\eta = 0.9$ in respect to time $t = 1$ and $t = 40$
 [1] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 [2] Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021 [3] Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 [4] Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173 [5] S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435 [6] G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027 [7] Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020430 [8] Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320 [9] Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 [10] Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009 [11] G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705 [12] Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $C^{1}$ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 [13] Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2571-2589. doi: 10.3934/dcdss.2020178 [14] Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343 [15] Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302 [16] Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1 [17] L. Bedin, Mark Thompson. Existence theory for a Poisson-Nernst-Planck model of electrophoresis. Communications on Pure & Applied Analysis, 2013, 12 (1) : 157-206. doi: 10.3934/cpaa.2013.12.157 [18] Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483 [19] Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72 [20] Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables