doi: 10.3934/dcdss.2020145

System response of an alcoholism model under the effect of immigration via non-singular kernel derivative

1. 

Department of Mathematics, Balıkesir University, Balıkesir, 10145, Turkey

2. 

Department of Mathematics, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, 52000, Morocco

* Corresponding author: Fırat Evirgen

Received  April 2019 Revised  July 2019 Published  November 2019

In this study, we aim to comprehensively investigate a drinking model connected to immigration in terms of Atangana-Baleanu derivative in Caputo type. To do this, we firstly extend the model describing drinking model by changing the derivative with time fractional derivative having Mittag-Leffler kernel. The existence and uniqueness of the drinking model solutions together with the stability analysis is shown by the help of Banach fixed point theorem. The special solution of the model is investigated using the Sumudu transformation and then, we present some numerical simulations for the different fractional orders to emphasize the effectiveness of the used derivative.

Citation: Fırat Evirgen, Sümeyra Uçar, Necati Özdemir, Zakia Hammouch. System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020145
References:
[1]

B. S. T. Alkahtani, I. Koca and A. Atangana, Analysis of A New Model of H1N1 Spread: Model Obtained Via Mittag-Leffler Function, Advances in Mechanical Engineering, 2017. doi: 10.1177/1687814017705566.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[4]

A. Atangana and I. Koca, New direction in fractional differentiation, Mathematics in Natural Science, 1 (2017), 18-25.  doi: 10.22436/mns.01.01.02.  Google Scholar

[5]

D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications, Vol. 7. Applications in engineering, life and social sciences, De Gruyter, Berlin, 2019.  Google Scholar

[6]

F. B. M. Belgacem, R. Silambarasan, Z. Hammouch and T. Mekkaoui, New and extended applications of the natural and sumudu transforms: Fractional diffusion and stokes fluid flow realms, Advances in Real and Complex Analysis with Applications, 107–120, Trends Math., Birkhäuser/Springer, Singapore, 2017. doi: 10.1007/978-981-10-4337-6_6.  Google Scholar

[7]

H. BulutD. KumarJ. SinghR. Swroop and H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Mathematics in Natural Science, 2 (2018), 33-43.  doi: 10.22436/mns.02.01.04.  Google Scholar

[8]

C. Castillo-Chavez and B. N. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[9]

M. A. Dokuyucu and E. Celik, Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model, New Trends Math. Sci., 4 (2016), 204-211.  doi: 10.20852/ntmsci.2016318931.  Google Scholar

[10]

F. Evirgen and N. Ozdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, Journal of Computational and Nonlinear Dynamics, 6 (2011), 021003, 6pp. doi: 10.1115/1.4002393.  Google Scholar

[11]

F. Evirgen and N. Ozdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, Fractional Dynamics and Control, Springer, New York, 2012,145–155. doi: 10.1007/978-1-4614-0457-6_12.  Google Scholar

[12]

F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016), 75-83.   Google Scholar

[13]

J. F. Gómez-AguilarA. Atangana and V. F. Morales-delgado, Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives, International Journal of Circuit Theory and Applications, 45 (2017), 1514-1533.   Google Scholar

[14]

J. F. Gómez-Aguilar and A. Atangana, Fractional derivatives with the power-law and the Mittag-Leffler kernel applied to the nonlinear Baggs-Freedman model, Fractal and Fractional, 2 (2018), 10. doi: 10.3390/fractalfract2010010.  Google Scholar

[15]

J. F. Gómez-Aguilar, Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.  Google Scholar

[16]

H. F. Huo and L. X. Feng, Global stability for an HIV/AIDS epidemic model with different latent stages and treatment, Appl. Math. Model., 37 (2013), 1480-1489.  doi: 10.1016/j.apm.2012.04.013.  Google Scholar

[17]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[18]

I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, Int. J. Optim. Control. Theor. Appl. IJOCTA, 8 (2018), 17-25.  doi: 10.11121/ijocta.01.2018.00532.  Google Scholar

[19]

I. Koca, Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators, The European Physical Journal Plus, 133 (2018), 100. doi: 10.1140/epjp/i2018-11949-4.  Google Scholar

[20]

Y. KocakM. A. Dokuyucu and E. Celik, Well-posedness of optimal control problem for the Schrodinger equations with complex potential, Int. J. Math. Comput., 26 (2015), 11-16.   Google Scholar

[21] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.  Google Scholar
[22]

G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath., 5 (2012), 1250005, 14 pp. doi: 10.1142/S1793524511001453.  Google Scholar

[23]

Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equation of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27-34.  doi: 10.1515/IJNSNS.2006.7.1.27.  Google Scholar

[24]

N. OzdemirY. PovstenkoD. Avci and B. B. I. Eroglu, Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation, Journal of Thermal Stresses, 37 (2014), 969-980.  doi: 10.1080/01495739.2014.912937.  Google Scholar

[25]

N. Ozdemir and M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate Pad approximation, Acta Physica Polonica A, 132 (2017), 1050-1053.   Google Scholar

[26]

Y. PovstenkoD. AvciB. B. I. Eroglu and N. Ozdemir, Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain, Thermal Science, 21 (2017), 19-28.  doi: 10.2298/TSCI160421236P.  Google Scholar

[27]

D. G. Prakasha, P. Veeresha and H. M. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, The European Physical Journal Plus, 134 (2019), 11p. doi: 10.1140/epjp/i2019-12590-5.  Google Scholar

[28]

G. ur RahmanR. P. AgarwalL. Liu and A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal. Real World Appl., 43 (2018), 96-120.  doi: 10.1016/j.nonrwa.2018.02.006.  Google Scholar

[29]

J. SinghD. KumaraZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[30]

D. L. SutharS. D. Purohit and R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Mathematics in Natural Science, 1 (2017), 26-32.  doi: 10.22436/mns.01.01.03.  Google Scholar

[31]

K. A. Touchent, Z. Hammouch, T. Mekkaoui and F. B. M. Belgacem, Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal and Fractional, 2 (2018), 22. doi: 10.3390/fractalfract2030022.  Google Scholar

[32]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. doi: 10.1140/epjp/i2017-11717-0.  Google Scholar

[33]

E. Ucar, N. Ozdemir and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 12pp. doi: 10.1051/mmnp/2019002.  Google Scholar

[34]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solitons Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.  Google Scholar

[35]

H. XiangC. C. Zhub and H. F. Huo, Modelling the effect of immigration on drinking behaviour, J. Biol. Dyn., 11 (2017), 275-298.  doi: 10.1080/17513758.2017.1337243.  Google Scholar

[36]

M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Science, 22 (2018), 185-194.  doi: 10.2298/TSCI170804285Y.  Google Scholar

show all references

References:
[1]

B. S. T. Alkahtani, I. Koca and A. Atangana, Analysis of A New Model of H1N1 Spread: Model Obtained Via Mittag-Leffler Function, Advances in Mechanical Engineering, 2017. doi: 10.1177/1687814017705566.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89 (2016), 447-454.  doi: 10.1016/j.chaos.2016.02.012.  Google Scholar

[4]

A. Atangana and I. Koca, New direction in fractional differentiation, Mathematics in Natural Science, 1 (2017), 18-25.  doi: 10.22436/mns.01.01.02.  Google Scholar

[5]

D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications, Vol. 7. Applications in engineering, life and social sciences, De Gruyter, Berlin, 2019.  Google Scholar

[6]

F. B. M. Belgacem, R. Silambarasan, Z. Hammouch and T. Mekkaoui, New and extended applications of the natural and sumudu transforms: Fractional diffusion and stokes fluid flow realms, Advances in Real and Complex Analysis with Applications, 107–120, Trends Math., Birkhäuser/Springer, Singapore, 2017. doi: 10.1007/978-981-10-4337-6_6.  Google Scholar

[7]

H. BulutD. KumarJ. SinghR. Swroop and H. M. Baskonus, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Mathematics in Natural Science, 2 (2018), 33-43.  doi: 10.22436/mns.02.01.04.  Google Scholar

[8]

C. Castillo-Chavez and B. N. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[9]

M. A. Dokuyucu and E. Celik, Nonlinear diffusion for chemotaxis and birth-death process for Keller-Segel model, New Trends Math. Sci., 4 (2016), 204-211.  doi: 10.20852/ntmsci.2016318931.  Google Scholar

[10]

F. Evirgen and N. Ozdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, Journal of Computational and Nonlinear Dynamics, 6 (2011), 021003, 6pp. doi: 10.1115/1.4002393.  Google Scholar

[11]

F. Evirgen and N. Ozdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, Fractional Dynamics and Control, Springer, New York, 2012,145–155. doi: 10.1007/978-1-4614-0457-6_12.  Google Scholar

[12]

F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, Int. J. Optim. Control. Theor. Appl. IJOCTA, 6 (2016), 75-83.   Google Scholar

[13]

J. F. Gómez-AguilarA. Atangana and V. F. Morales-delgado, Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives, International Journal of Circuit Theory and Applications, 45 (2017), 1514-1533.   Google Scholar

[14]

J. F. Gómez-Aguilar and A. Atangana, Fractional derivatives with the power-law and the Mittag-Leffler kernel applied to the nonlinear Baggs-Freedman model, Fractal and Fractional, 2 (2018), 10. doi: 10.3390/fractalfract2010010.  Google Scholar

[15]

J. F. Gómez-Aguilar, Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Physica A, 494 (2018), 52-75.  doi: 10.1016/j.physa.2017.12.007.  Google Scholar

[16]

H. F. Huo and L. X. Feng, Global stability for an HIV/AIDS epidemic model with different latent stages and treatment, Appl. Math. Model., 37 (2013), 1480-1489.  doi: 10.1016/j.apm.2012.04.013.  Google Scholar

[17]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[18]

I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, Int. J. Optim. Control. Theor. Appl. IJOCTA, 8 (2018), 17-25.  doi: 10.11121/ijocta.01.2018.00532.  Google Scholar

[19]

I. Koca, Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators, The European Physical Journal Plus, 133 (2018), 100. doi: 10.1140/epjp/i2018-11949-4.  Google Scholar

[20]

Y. KocakM. A. Dokuyucu and E. Celik, Well-posedness of optimal control problem for the Schrodinger equations with complex potential, Int. J. Math. Comput., 26 (2015), 11-16.   Google Scholar

[21] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.  Google Scholar
[22]

G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath., 5 (2012), 1250005, 14 pp. doi: 10.1142/S1793524511001453.  Google Scholar

[23]

Z. M. Odibat and S. Momani, Application of variational iteration method to nonlinear differential equation of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 27-34.  doi: 10.1515/IJNSNS.2006.7.1.27.  Google Scholar

[24]

N. OzdemirY. PovstenkoD. Avci and B. B. I. Eroglu, Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation, Journal of Thermal Stresses, 37 (2014), 969-980.  doi: 10.1080/01495739.2014.912937.  Google Scholar

[25]

N. Ozdemir and M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate Pad approximation, Acta Physica Polonica A, 132 (2017), 1050-1053.   Google Scholar

[26]

Y. PovstenkoD. AvciB. B. I. Eroglu and N. Ozdemir, Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain, Thermal Science, 21 (2017), 19-28.  doi: 10.2298/TSCI160421236P.  Google Scholar

[27]

D. G. Prakasha, P. Veeresha and H. M. Baskonus, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, The European Physical Journal Plus, 134 (2019), 11p. doi: 10.1140/epjp/i2019-12590-5.  Google Scholar

[28]

G. ur RahmanR. P. AgarwalL. Liu and A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal. Real World Appl., 43 (2018), 96-120.  doi: 10.1016/j.nonrwa.2018.02.006.  Google Scholar

[29]

J. SinghD. KumaraZ. Hammouch and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.  doi: 10.1016/j.amc.2017.08.048.  Google Scholar

[30]

D. L. SutharS. D. Purohit and R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Mathematics in Natural Science, 1 (2017), 26-32.  doi: 10.22436/mns.01.01.03.  Google Scholar

[31]

K. A. Touchent, Z. Hammouch, T. Mekkaoui and F. B. M. Belgacem, Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal and Fractional, 2 (2018), 22. doi: 10.3390/fractalfract2030022.  Google Scholar

[32]

M. Toufik and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. doi: 10.1140/epjp/i2017-11717-0.  Google Scholar

[33]

E. Ucar, N. Ozdemir and E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 12pp. doi: 10.1051/mmnp/2019002.  Google Scholar

[34]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solitons Fractals, 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.  Google Scholar

[35]

H. XiangC. C. Zhub and H. F. Huo, Modelling the effect of immigration on drinking behaviour, J. Biol. Dyn., 11 (2017), 275-298.  doi: 10.1080/17513758.2017.1337243.  Google Scholar

[36]

M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Science, 22 (2018), 185-194.  doi: 10.2298/TSCI170804285Y.  Google Scholar

Figure 1.  System behavior of the fractional drinking model (\protect5) with order $ \eta = 0.3 $ in respect to time $ t = 1 $ and $ t = 40 $
Figure 2.  System behavior of the fractional drinking model (\protect5) with order $ \eta = 0.5 $ in respect to time $ t = 1 $ and $ t = 40 $
Figure 3.  System behavior of the fractional drinking model (\protect5) with order $ \eta = 0.7 $ in respect to time $ t = 1 $ and $ t = 40 $
Figure 4.  System behavior of the fractional drinking model (\protect5) with order $ \eta = 0.9 $ in respect to time $ t = 1 $ and $ t = 40 $
[1]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055

[2]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[3]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[4]

Ndolane Sene. Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020173

[5]

G. M. Bahaa. Generalized variational calculus in terms of multi-parameters involving Atangana-Baleanu's derivatives and application. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 485-501. doi: 10.3934/dcdss.2020027

[6]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[7]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[8]

Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020178

[9]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[10]

Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1

[11]

L. Bedin, Mark Thompson. Existence theory for a Poisson-Nernst-Planck model of electrophoresis. Communications on Pure & Applied Analysis, 2013, 12 (1) : 157-206. doi: 10.3934/cpaa.2013.12.157

[12]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[13]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[14]

Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483

[15]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[16]

Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

[17]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[18]

Anatoli Babin, Alexander Figotin. Some mathematical problems in a neoclassical theory of electric charges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1283-1326. doi: 10.3934/dcds.2010.27.1283

[19]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[20]

El Houcein El Abdalaoui, Joanna Kułaga-Przymus, Mariusz Lemańczyk, Thierry de la Rue. The Chowla and the Sarnak conjectures from ergodic theory point of view. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2899-2944. doi: 10.3934/dcds.2017125

2018 Impact Factor: 0.545

Article outline

Figures and Tables

[Back to Top]