• Previous Article
    From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation
  • DCDS-S Home
  • This Issue
  • Next Article
    Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects
doi: 10.3934/dcdss.2020148

A priori estimates for elliptic problems via Liouville type theorems

1. 

Department of Mathematics, University of Firenze, viale Morgagni 40-44, 50134 Firenze, Italy

2. 

Department of Mathematics, University of Perugia, via Vanvitelli 1, 06123 Perugia, Italy

* Corresponding author: Roberta Filippucci

Dedicated to Professor Patrizia Pucci on the occasion of her 65th birthday, with deep gratitude, esteem and affection

Received  November 2018 Revised  November 2018 Published  November 2019

In this paper we prove a priori estimates for positive solutions of elliptic equations of the $ p $-Laplacian type on arbitrary domains of $ \mathbb {R}^N $, when a nonlinearity depending on the gradient is considered. Also the case of systems with very general nonlinearities is considered. Our main theorems extend previous results by Polacik, Quitter and Souplet in [26] in which either the case $ p = 2 $ with a nonlinearity depending on the gradient or the $ p $-Laplacian case with a nonlinearity not depending on the gradient is treated. The technique is based on the use of a method developed in [26] whose main tools are rescaling arguments combined with a key "doubling" property, which is different from the celebrated blow up technique due to Gidas and Spruck in [16]. A discussion on the sharpness of the main result in the scalar case is presented.

Citation: Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020148
References:
[1]

C. Azizieh and P. Clèment, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differential Equations, 179 (2002), 213-245.  doi: 10.1006/jdeq.2001.4029.  Google Scholar

[2]

J.-P. Bartier, Global behavior of solutions of a reaction-diffusion equation with gradient absorption in unbounded domains, Asymptot. Anal., 46 (2006), 325-347.   Google Scholar

[3]

M. Ben-ArtziP. Souplet and F. B. Weissler, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl., 81 (2002), 343-378.  doi: 10.1016/S0021-7824(01)01243-0.  Google Scholar

[4]

M. Chipot and F. B. Weissler, Some blow up results for a nonlinear parabolic problem with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.  doi: 10.1137/0520060.  Google Scholar

[5]

P. ClémentJ. FleckingerE. Mitidieri and F. de Thélin, Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations, 166 (2000), 455-477.  doi: 10.1006/jdeq.2000.3805.  Google Scholar

[6]

P. ClémentR. Manásevich and E. Mitidieri, Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.  doi: 10.1080/03605309308821005.  Google Scholar

[7]

A. Farina and J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations, Ⅱ, J. Differential Equations, 250 (2011), 4409-4436.  doi: 10.1016/j.jde.2011.02.016.  Google Scholar

[8]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.  doi: 10.1016/j.na.2008.12.018.  Google Scholar

[9]

R. Filippucci, Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Diff. Equations, 250 (2011), 572-595.  doi: 10.1016/j.jde.2010.09.028.  Google Scholar

[10]

R. Filippucci and C. Lini, Existence of solutions for quasilinear Dirichlet problems with gradient terms, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 267-286.  doi: 10.3934/dcdss.2019019.  Google Scholar

[11]

R. FilippucciP. Pucci and M. Rigoli, Nonlinear weighted $p$-Laplacian elliptic inequalities with gradient terms, Comm. Cont. Math., 12 (2010), 501-535.  doi: 10.1142/S0219199710003841.  Google Scholar

[12]

R. Filippucci and F. Vinti, Coercive elliptic systems with gradient terms, Advances in Nonlinear Analysis, 6 (2017), 165-182.  doi: 10.1515/anona-2016-0183.  Google Scholar

[13]

M. Ghergu and V. Rădulescu, Nonradial blow-up solutions of sublinear elliptic equations with gradient terms, Comm. Pure Appl. An., 3 (2004), 465-474.  doi: 10.3934/cpaa.2004.3.465.  Google Scholar

[14]

M. Ghergu and V. Rădulescu, On a class of sublinear elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005), 635-646.  doi: 10.1016/j.jmaa.2005.03.012.  Google Scholar

[15] M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, 37. The Clarendon Press, Oxford University Press, Oxford, 2008.   Google Scholar
[16]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar

[17]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[18]

H. A. Hamid and M. F. Bidaut-Véron, Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient, C. R. Math. Acad. Sci. Paris, 346 (2008), 1251-1256.  doi: 10.1016/j.crma.2008.10.002.  Google Scholar

[19]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.   Google Scholar

[20]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[21]

O. Martio and G. Porru, Large solutions of quasilinear elliptic equations in the degenerate case, Complex analysis and differential equations (Uppsala, 1997), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., Uppsala Univ., Uppsala, 64 (1999), 225–241.  Google Scholar

[22]

E. Mitidieri and S. I. Pohozaev, The absence of global positive solutions to quasilinear elliptic inequalities, Dokl. Akad. Nauk, 359 (1998), 456-460.   Google Scholar

[23]

E. Mitidieri and S. I. Pohozaev, Absence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb {R}^N$, Dokl. Akad. Nauk, 366 (1999), 13-17.   Google Scholar

[24]

E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 3 (2001), 1-362.   Google Scholar

[25]

W.-M. Ni and J. Serrin, Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case, Atti Convegni Lincei, 77 (1986), 231-257.   Google Scholar

[26]

P. PoláčikP. Quitter and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I. Elliptic equations and systems, Duke Mathematical Journal, 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[27]

P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.  Google Scholar

[28]

D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Diff. Equations, 199 (2004), 96-114.  doi: 10.1016/j.jde.2003.10.021.  Google Scholar

[29]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.  doi: 10.1007/BF02392645.  Google Scholar

[30]

P. Souplet, Finite time blowup for a nonlinear parabolic equation with a gradient term and applications, Math Methods Appl. Sci., 19 (1996), 1317-1333.  doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M.  Google Scholar

[31]

P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 10 (2001), 19 pp.  Google Scholar

[32]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[33]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

show all references

References:
[1]

C. Azizieh and P. Clèment, A priori estimates and continuation methods for positive solutions of $p$-Laplace equations, J. Differential Equations, 179 (2002), 213-245.  doi: 10.1006/jdeq.2001.4029.  Google Scholar

[2]

J.-P. Bartier, Global behavior of solutions of a reaction-diffusion equation with gradient absorption in unbounded domains, Asymptot. Anal., 46 (2006), 325-347.   Google Scholar

[3]

M. Ben-ArtziP. Souplet and F. B. Weissler, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl., 81 (2002), 343-378.  doi: 10.1016/S0021-7824(01)01243-0.  Google Scholar

[4]

M. Chipot and F. B. Weissler, Some blow up results for a nonlinear parabolic problem with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.  doi: 10.1137/0520060.  Google Scholar

[5]

P. ClémentJ. FleckingerE. Mitidieri and F. de Thélin, Existence of positive solutions for a nonvariational quasilinear elliptic system, J. Differential Equations, 166 (2000), 455-477.  doi: 10.1006/jdeq.2000.3805.  Google Scholar

[6]

P. ClémentR. Manásevich and E. Mitidieri, Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.  doi: 10.1080/03605309308821005.  Google Scholar

[7]

A. Farina and J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations, Ⅱ, J. Differential Equations, 250 (2011), 4409-4436.  doi: 10.1016/j.jde.2011.02.016.  Google Scholar

[8]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.  doi: 10.1016/j.na.2008.12.018.  Google Scholar

[9]

R. Filippucci, Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Diff. Equations, 250 (2011), 572-595.  doi: 10.1016/j.jde.2010.09.028.  Google Scholar

[10]

R. Filippucci and C. Lini, Existence of solutions for quasilinear Dirichlet problems with gradient terms, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 267-286.  doi: 10.3934/dcdss.2019019.  Google Scholar

[11]

R. FilippucciP. Pucci and M. Rigoli, Nonlinear weighted $p$-Laplacian elliptic inequalities with gradient terms, Comm. Cont. Math., 12 (2010), 501-535.  doi: 10.1142/S0219199710003841.  Google Scholar

[12]

R. Filippucci and F. Vinti, Coercive elliptic systems with gradient terms, Advances in Nonlinear Analysis, 6 (2017), 165-182.  doi: 10.1515/anona-2016-0183.  Google Scholar

[13]

M. Ghergu and V. Rădulescu, Nonradial blow-up solutions of sublinear elliptic equations with gradient terms, Comm. Pure Appl. An., 3 (2004), 465-474.  doi: 10.3934/cpaa.2004.3.465.  Google Scholar

[14]

M. Ghergu and V. Rădulescu, On a class of sublinear elliptic problems with convection term, J. Math. Anal. Appl., 311 (2005), 635-646.  doi: 10.1016/j.jmaa.2005.03.012.  Google Scholar

[15] M. Ghergu and V. Rădulescu, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Series in Mathematics and its Applications, 37. The Clarendon Press, Oxford University Press, Oxford, 2008.   Google Scholar
[16]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.  Google Scholar

[17]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[18]

H. A. Hamid and M. F. Bidaut-Véron, Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient, C. R. Math. Acad. Sci. Paris, 346 (2008), 1251-1256.  doi: 10.1016/j.crma.2008.10.002.  Google Scholar

[19]

B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.   Google Scholar

[20]

G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.  Google Scholar

[21]

O. Martio and G. Porru, Large solutions of quasilinear elliptic equations in the degenerate case, Complex analysis and differential equations (Uppsala, 1997), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., Uppsala Univ., Uppsala, 64 (1999), 225–241.  Google Scholar

[22]

E. Mitidieri and S. I. Pohozaev, The absence of global positive solutions to quasilinear elliptic inequalities, Dokl. Akad. Nauk, 359 (1998), 456-460.   Google Scholar

[23]

E. Mitidieri and S. I. Pohozaev, Absence of positive solutions for a system of quasilinear elliptic equations and inequalities in $\mathbb {R}^N$, Dokl. Akad. Nauk, 366 (1999), 13-17.   Google Scholar

[24]

E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 3 (2001), 1-362.   Google Scholar

[25]

W.-M. Ni and J. Serrin, Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case, Atti Convegni Lincei, 77 (1986), 231-257.   Google Scholar

[26]

P. PoláčikP. Quitter and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I. Elliptic equations and systems, Duke Mathematical Journal, 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[27]

P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.  Google Scholar

[28]

D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Diff. Equations, 199 (2004), 96-114.  doi: 10.1016/j.jde.2003.10.021.  Google Scholar

[29]

J. Serrin and H. Zou, Cauchy-Liouville and universal boundness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142.  doi: 10.1007/BF02392645.  Google Scholar

[30]

P. Souplet, Finite time blowup for a nonlinear parabolic equation with a gradient term and applications, Math Methods Appl. Sci., 19 (1996), 1317-1333.  doi: 10.1002/(SICI)1099-1476(19961110)19:16<1317::AID-MMA835>3.0.CO;2-M.  Google Scholar

[31]

P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differential Equations, 10 (2001), 19 pp.  Google Scholar

[32]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[33]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[1]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[2]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[3]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[4]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[5]

Samer Dweik. $ L^{p, q} $ estimates on the transport density. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3001-3009. doi: 10.3934/cpaa.2019134

[6]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[7]

Lishan Lin. A priori bounds and existence result of positive solutions for fractional Laplacian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1517-1531. doi: 10.3934/dcds.2019065

[8]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[9]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[10]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[11]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[12]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[13]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[14]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[15]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[16]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[17]

Leszek Gasiński, Nikolaos S. Papageorgiou. Three nontrivial solutions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1421-1437. doi: 10.3934/cpaa.2009.8.1421

[18]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[19]

Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006

[20]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (21)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]