doi: 10.3934/dcdss.2020149

Evolution fractional differential problems with impulses and nonlocal conditions

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, I-06123 Perugia, Italy

2. 

Faculty of Physics and Mathematics, Voronezh State Pedagogical University, 394043 Voronezh, Russia

3. 

Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, I-42122 Reggio Emilia, Italy

* Corresponding author: Irene Benedetti

Dedicated to Professor Patrizia Pucci on the occasion of her 65th birthday

Received  September 2018 Revised  October 2018 Published  November 2019

We obtain existence results for mild solutions of a fractional differential inclusion subjected to impulses and nonlocal initial conditions. By means of a technique based on the weak topology in connection with the Glicksberg-Ky Fan Fixed Point Theorem we are able to avoid any hypotheses of compactness on the semigroup and on the nonlinear term and at the same time we do not need to assume hypotheses of monotonicity or Lipschitz regularity neither on the nonlinear term, nor on the impulse functions, nor on the nonlocal condition. An application to a fractional diffusion process complete the discussion of the studied problem. 200 words.

Citation: Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020149
References:
[1]

K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electronic Journal of Differential Equations, 2013 (2013), 13 pp.  Google Scholar

[2]

K. BalachandranS. Kiruthika and J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1970-1977.  doi: 10.1016/j.cnsns.2010.08.005.  Google Scholar

[3]

I. Benedetti, L. Malaguti and V. Taddei, Nonlocal semilinear evolution equations without strong compactness: Theory and applications, Bound. Value Probl., 2013 (2013), 18 pp. doi: 10.1186/1687-2770-2013-60.  Google Scholar

[4]

I. Benedetti, V. Obukovskii and V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space, Journal of Function Spaces, (2015), Art. ID 651359, 10 pp. doi: 10.1155/2015/651359.  Google Scholar

[5]

I. BenedettiV. Obukovskii and V. Taddei, On generalized boundary value problems for a class of fractional differential inclusions, Fractional Calculus and Applied Analysis, 20 (2017), 1424-1446.  doi: 10.1515/fca-2017-0075.  Google Scholar

[6]

S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., 39 (1938), 913-944.  doi: 10.2307/1968472.  Google Scholar

[7]

A. Chadha and D. N. Pandey, Existence of a mild solution for impulsive neutral fractional differential equations with nonlocal conditions, Differential Equations and Applications, 7 (2015), 151-168.  doi: 10.7153/dea-07-09.  Google Scholar

[8]

A. Chauhan and J. Dabas, Existence of mild solutions for impulsive fractional-order semilinear evolution equations with nonlocal conditions, Electronic Journal of Differential Equations, 2011 (2011), 10 pp.  Google Scholar

[9]

N. Dunford and J. T. Schwartz, Linear Operators. Part I. General theory, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.  Google Scholar

[10]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[11]

I. Ekeland and R. Teman, Convex Anaysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976.  Google Scholar

[12]

H. Ergören and A. Kiliçman, Non-local boundary value problems for impulsive fractional integro-differential equations in Banach spaces, Bound. Value Probl., 2012 (2012), 15 pp. doi: 10.1186/1687-2770-2012-145.  Google Scholar

[13]

K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[14]

F.-D. GeH.-C. Zhou and C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Applied Mathematics and Computation, 275 (2016), 107-120.  doi: 10.1016/j.amc.2015.11.056.  Google Scholar

[15]

I. L. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174.  doi: 10.2307/2032478.  Google Scholar

[16]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter & Co., Berlin, 2001. doi: 10.1515/9783110870893.  Google Scholar

[17]

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Second edition, Pergamon Press, Oxford-Elmsford, N.Y., 1982.  Google Scholar

[18]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[19]

A. N. Kochubeĭ, Diffusion of fractional order, Differential Equations, 26 (1990), 485-492.   Google Scholar

[20]

A. N. Kochubeĭ, The Cauchy problem for evolution equations of fractional order, Differential Equations, 25 (1989), 967-974.   Google Scholar

[21]

S. Q. Liang and R. Mei, Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions, Advances in Difference Equations, 2014 (2014), 16 pp. doi: 10.1186/1687-1847-2014-101.  Google Scholar

[22]

F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solutions and Fractals, 7 (1996), 1461-1477.  doi: 10.1016/0960-0779(95)00125-5.  Google Scholar

[23]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[24]

J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Bound. Value Probl., 2012 (2012), 12 pp. doi: 10.1186/1687-2770-2012-71.  Google Scholar

[25]

R. R. Nigmatullin, Fractional integral and its physical interpretation, Theoretical and Mathematical Physics, 90 Issue 3 (1992), 242–251. Google Scholar

[26]

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198, Academic Press, Inc., San Diego, CA 1999.  Google Scholar

[27]

L. Schwartz, Cours d'Analyse I, Second Edition, Hermann, Paris 1981.  Google Scholar

[28]

X.-B. ShuaY. Z. Lai and Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Analysis, 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.  Google Scholar

[29]

N. K. Tomar and J. Dabas, Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions, Journal of Nonlinear Evolution Equations and Applications, 2012 (2012), 57-67.   Google Scholar

[30]

M. Väth, Ideal Spaces, Lect. Notes Math., no. 1664, Springer, Berlin, Heidelberg, 1997. Google Scholar

[31]

I. I. Vrabie, $C_0$-Semigroups and Applications, North-Holland Mathematics Studies, 191. North-Holland Publishing Co., Amsterdam, 2003.  Google Scholar

[32]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynamics of PDE, 8 (2011), 345-361.  doi: 10.4310/DPDE.2011.v8.n4.a3.  Google Scholar

[33]

J. R. Wang and A. G. Ibrahim, Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 518306, 16 pp. doi: 10.1155/2013/518306.  Google Scholar

[34]

L. Z. Zhang and Y. Liang, Monotone iterative technique for impulsive fractional evolution equations with noncompact semigroup, Advances in Difference Equations, 2015 (2015), 15 pp. doi: 10.1186/s13662-015-0665-6.  Google Scholar

[35]

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016. doi: doi.  Google Scholar

show all references

References:
[1]

K. Aissani and M. Benchohra, Impulsive fractional differential inclusions with infinite delay, Electronic Journal of Differential Equations, 2013 (2013), 13 pp.  Google Scholar

[2]

K. BalachandranS. Kiruthika and J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1970-1977.  doi: 10.1016/j.cnsns.2010.08.005.  Google Scholar

[3]

I. Benedetti, L. Malaguti and V. Taddei, Nonlocal semilinear evolution equations without strong compactness: Theory and applications, Bound. Value Probl., 2013 (2013), 18 pp. doi: 10.1186/1687-2770-2013-60.  Google Scholar

[4]

I. Benedetti, V. Obukovskii and V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space, Journal of Function Spaces, (2015), Art. ID 651359, 10 pp. doi: 10.1155/2015/651359.  Google Scholar

[5]

I. BenedettiV. Obukovskii and V. Taddei, On generalized boundary value problems for a class of fractional differential inclusions, Fractional Calculus and Applied Analysis, 20 (2017), 1424-1446.  doi: 10.1515/fca-2017-0075.  Google Scholar

[6]

S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. of Math., 39 (1938), 913-944.  doi: 10.2307/1968472.  Google Scholar

[7]

A. Chadha and D. N. Pandey, Existence of a mild solution for impulsive neutral fractional differential equations with nonlocal conditions, Differential Equations and Applications, 7 (2015), 151-168.  doi: 10.7153/dea-07-09.  Google Scholar

[8]

A. Chauhan and J. Dabas, Existence of mild solutions for impulsive fractional-order semilinear evolution equations with nonlocal conditions, Electronic Journal of Differential Equations, 2011 (2011), 10 pp.  Google Scholar

[9]

N. Dunford and J. T. Schwartz, Linear Operators. Part I. General theory, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.  Google Scholar

[10]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[11]

I. Ekeland and R. Teman, Convex Anaysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford, American Elsevier Publishing Co., Inc., New York, 1976.  Google Scholar

[12]

H. Ergören and A. Kiliçman, Non-local boundary value problems for impulsive fractional integro-differential equations in Banach spaces, Bound. Value Probl., 2012 (2012), 15 pp. doi: 10.1186/1687-2770-2012-145.  Google Scholar

[13]

K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[14]

F.-D. GeH.-C. Zhou and C.-H. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Applied Mathematics and Computation, 275 (2016), 107-120.  doi: 10.1016/j.amc.2015.11.056.  Google Scholar

[15]

I. L. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170-174.  doi: 10.2307/2032478.  Google Scholar

[16]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter & Co., Berlin, 2001. doi: 10.1515/9783110870893.  Google Scholar

[17]

L. V. Kantorovich and G. P. Akilov, Functional Analysis, Second edition, Pergamon Press, Oxford-Elmsford, N.Y., 1982.  Google Scholar

[18]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[19]

A. N. Kochubeĭ, Diffusion of fractional order, Differential Equations, 26 (1990), 485-492.   Google Scholar

[20]

A. N. Kochubeĭ, The Cauchy problem for evolution equations of fractional order, Differential Equations, 25 (1989), 967-974.   Google Scholar

[21]

S. Q. Liang and R. Mei, Existence of mild solutions for fractional impulsive neutral evolution equations with nonlocal conditions, Advances in Difference Equations, 2014 (2014), 16 pp. doi: 10.1186/1687-1847-2014-101.  Google Scholar

[22]

F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solutions and Fractals, 7 (1996), 1461-1477.  doi: 10.1016/0960-0779(95)00125-5.  Google Scholar

[23]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[24]

J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Bound. Value Probl., 2012 (2012), 12 pp. doi: 10.1186/1687-2770-2012-71.  Google Scholar

[25]

R. R. Nigmatullin, Fractional integral and its physical interpretation, Theoretical and Mathematical Physics, 90 Issue 3 (1992), 242–251. Google Scholar

[26]

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198, Academic Press, Inc., San Diego, CA 1999.  Google Scholar

[27]

L. Schwartz, Cours d'Analyse I, Second Edition, Hermann, Paris 1981.  Google Scholar

[28]

X.-B. ShuaY. Z. Lai and Y. M. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Analysis, 74 (2011), 2003-2011.  doi: 10.1016/j.na.2010.11.007.  Google Scholar

[29]

N. K. Tomar and J. Dabas, Controllability of impulsive fractional order semilinear evolution equations with nonlocal conditions, Journal of Nonlinear Evolution Equations and Applications, 2012 (2012), 57-67.   Google Scholar

[30]

M. Väth, Ideal Spaces, Lect. Notes Math., no. 1664, Springer, Berlin, Heidelberg, 1997. Google Scholar

[31]

I. I. Vrabie, $C_0$-Semigroups and Applications, North-Holland Mathematics Studies, 191. North-Holland Publishing Co., Amsterdam, 2003.  Google Scholar

[32]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dynamics of PDE, 8 (2011), 345-361.  doi: 10.4310/DPDE.2011.v8.n4.a3.  Google Scholar

[33]

J. R. Wang and A. G. Ibrahim, Existence and controllability results for nonlocal fractional impulsive differential inclusions in Banach spaces, Journal of Function Spaces and Applications, 2013 (2013), Art. ID 518306, 16 pp. doi: 10.1155/2013/518306.  Google Scholar

[34]

L. Z. Zhang and Y. Liang, Monotone iterative technique for impulsive fractional evolution equations with noncompact semigroup, Advances in Difference Equations, 2015 (2015), 15 pp. doi: 10.1186/s13662-015-0665-6.  Google Scholar

[35]

Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier/Academic Press, London, 2016. doi: doi.  Google Scholar

[1]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[2]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[3]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[4]

Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations & Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507

[5]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[6]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[7]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations & Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[8]

Jan Andres, Luisa Malaguti, Martina Pavlačková. Hartman-type conditions for multivalued Dirichlet problem in abstract spaces. Conference Publications, 2015, 2015 (special) : 38-55. doi: 10.3934/proc.2015.0038

[9]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[10]

Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118

[11]

Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523

[12]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[13]

Abdelkader Boucherif. Nonlocal problems for parabolic inclusions. Conference Publications, 2009, 2009 (Special) : 82-91. doi: 10.3934/proc.2009.2009.82

[14]

Boumediene Abdellaoui, Ahmed Attar, Abdelrazek Dieb, Ireneo Peral. Attainability of the fractional hardy constant with nonlocal mixed boundary conditions: Applications. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 5963-5991. doi: 10.3934/dcds.2018131

[15]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033

[16]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[17]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[18]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations & Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[19]

Raúl Ferreira, Julio D. Rossi. Decay estimates for a nonlocal $p-$Laplacian evolution problem with mixed boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1469-1478. doi: 10.3934/dcds.2015.35.1469

[20]

Hermann Brunner, Jingtang Ma. Abstract cascading multigrid preconditioners in Besov spaces. Communications on Pure & Applied Analysis, 2006, 5 (2) : 349-365. doi: 10.3934/cpaa.2006.5.349

2018 Impact Factor: 0.545

Article outline

[Back to Top]