doi: 10.3934/dcdss.2020151

Positive solutions for some generalized $ p $–Laplacian type problems

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

* Corresponding author: Anna Maria Candela

Dedicated to Patrizia Pucci on the occasion of her 65th birthday

Received  July 2018 Revised  December 2018 Published  November 2019

Fund Project: Partially supported by Fondi di Ricerca di Ateneo 2015/16 and Research Funds INdAM – GNAMPA Project 2018 "Problemi ellittici semilineari: alcune idee variazionali"

In this paper, we prove the existence of nontrivial weak bounded solutions of the nonlinear elliptic problem
$ \left\{ \begin{array}{ll} - {\rm div} (a(x,u,\nabla u)) + A_t(x,u,\nabla u) = f(x,u) &\hbox{in $\Omega$,}\\ u \ge 0 &\hbox{in $\Omega$,}\\ u\ = \ 0 & \hbox{on $\partial\Omega$,} \end{array} \right. $
where
$ \Omega \subset \mathbb {R}^N $
is an open bounded domain,
$ N\ge 3 $
, and
$ A(x, t, \xi) $
,
$ f(x, t) $
are given functions, with
$ A_t = \frac{\partial A}{\partial t} $
,
$ a = \nabla_\xi A $
.
To this aim, we use variational arguments which are adapted to our setting and exploit a weak version of the Cerami–Palais–Smale condition.
Furthermore, if
$ A(x, t, \xi) $
grows fast enough with respect to
$ t $
, then the nonlinear term related to
$ f(x, t) $
may have also a supercritical growth.
Citation: Anna Maria Candela, Addolorata Salvatore. Positive solutions for some generalized $ p $–Laplacian type problems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020151
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.  doi: 10.1007/BF00379536.  Google Scholar

[3]

D. Arcoya and L. Boccardo, Some remarks on critical point theory for nondifferentiable functionals, NoDEA Nonlinear Differential Equations Appl., 6 (1999), 79-100.  doi: 10.1007/s000300050066.  Google Scholar

[4]

G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.  doi: 10.1007/s00030-012-0193-y.  Google Scholar

[5]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $ \mathbb {R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[6]

A. M. Candela and G. Palmieri, Multiple solutions of some nonlinear variational problems, Adv. Nonlinear Stud., 6 (2006), 269-286.  doi: 10.1515/ans-2006-0209.  Google Scholar

[7]

A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.  doi: 10.1007/s00526-008-0193-2.  Google Scholar

[8]

A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications, 7th AIMS Conference, Suppl., (2009), 133–142.  Google Scholar

[9]

A. M. Candela and G. Palmieri, Multiplicity results for some quasilinear equations in lack of symmetry, Adv. Nonlinear Anal., 1 (2012), 121-157.   Google Scholar

[10]

A. M. Candela and G. Palmieri, An abstract three critical points theorem and applications, in Proceedings of Dynamic Systems and Applications, Dynamic Publishers Inc., Atlanta, 6 (2012), 70–77. Google Scholar

[11]

A. M. Candela and G. Palmieri, Multiplicity results for some nonlinear elliptic problems with asymptotically $p$-linear terms, Calc. Var. Partial Differential Equations, 56 (2017), Art. 72, 39 pp. doi: 10.1007/s00526-017-1170-4.  Google Scholar

[12]

A. M. CandelaG. Palmieri and K. Perera, Multiple solutions for $p$-Laplacian type problems with asymptotically $p$-linear terms via a cohomological index theory, J. Differential Equations, 259 (2015), 235-263.  doi: 10.1016/j.jde.2015.02.007.  Google Scholar

[13]

A. M. Candela, G. Palmieri and A. Salvatore, Multiple solutions for some symmetric supercritical problems, Commun. Contemp. Math., (to appear). doi: 10.1142/S0219199719500755.  Google Scholar

[14]

A. M. CandelaG. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.  doi: 10.1016/j.na.2018.02.011.  Google Scholar

[15]

A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.  doi: 10.7494/OpMath.2019.39.2.175.  Google Scholar

[16]

A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.  doi: 10.12775/TMNA.1995.050.  Google Scholar

[17]

P. Lindqvist, On the equation div $ (|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u =0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[18]

B. Pellacci and M. Squassina, Unbounded critical points for a class of lower semicontinuous functionals, J. Differential Equations, 201 (2004), 25-62.  doi: 10.1016/j.jde.2004.03.002.  Google Scholar

[19]

P. Pucci and V. Rădulescu, Combined effects in quasilinear elliptic problems with lack of compactness, Rend. Lincei Mat. Appl., 22 (2011), 189-205.  doi: 10.4171/RLM/595.  Google Scholar

[20]

N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variations, Arch. Rational Mech. Anal., 134 (1996), 249-274.  doi: 10.1007/BF00379536.  Google Scholar

[3]

D. Arcoya and L. Boccardo, Some remarks on critical point theory for nondifferentiable functionals, NoDEA Nonlinear Differential Equations Appl., 6 (1999), 79-100.  doi: 10.1007/s000300050066.  Google Scholar

[4]

G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.  doi: 10.1007/s00030-012-0193-y.  Google Scholar

[5]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $ \mathbb {R}^N$, J. Differential Equations, 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.  Google Scholar

[6]

A. M. Candela and G. Palmieri, Multiple solutions of some nonlinear variational problems, Adv. Nonlinear Stud., 6 (2006), 269-286.  doi: 10.1515/ans-2006-0209.  Google Scholar

[7]

A. M. Candela and G. Palmieri, Infinitely many solutions of some nonlinear variational equations, Calc. Var. Partial Differential Equations, 34 (2009), 495-530.  doi: 10.1007/s00526-008-0193-2.  Google Scholar

[8]

A. M. Candela and G. Palmieri, Some abstract critical point theorems and applications, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications, 7th AIMS Conference, Suppl., (2009), 133–142.  Google Scholar

[9]

A. M. Candela and G. Palmieri, Multiplicity results for some quasilinear equations in lack of symmetry, Adv. Nonlinear Anal., 1 (2012), 121-157.   Google Scholar

[10]

A. M. Candela and G. Palmieri, An abstract three critical points theorem and applications, in Proceedings of Dynamic Systems and Applications, Dynamic Publishers Inc., Atlanta, 6 (2012), 70–77. Google Scholar

[11]

A. M. Candela and G. Palmieri, Multiplicity results for some nonlinear elliptic problems with asymptotically $p$-linear terms, Calc. Var. Partial Differential Equations, 56 (2017), Art. 72, 39 pp. doi: 10.1007/s00526-017-1170-4.  Google Scholar

[12]

A. M. CandelaG. Palmieri and K. Perera, Multiple solutions for $p$-Laplacian type problems with asymptotically $p$-linear terms via a cohomological index theory, J. Differential Equations, 259 (2015), 235-263.  doi: 10.1016/j.jde.2015.02.007.  Google Scholar

[13]

A. M. Candela, G. Palmieri and A. Salvatore, Multiple solutions for some symmetric supercritical problems, Commun. Contemp. Math., (to appear). doi: 10.1142/S0219199719500755.  Google Scholar

[14]

A. M. CandelaG. Palmieri and A. Salvatore, Infinitely many solutions for quasilinear elliptic equations with lack of symmetry, Nonlinear Anal., 172 (2018), 141-162.  doi: 10.1016/j.na.2018.02.011.  Google Scholar

[15]

A. M. Candela and A. Salvatore, Infinitely many solutions for some nonlinear supercritical problems with break of symmetry, Opuscula Math., 39 (2019), 175-194.  doi: 10.7494/OpMath.2019.39.2.175.  Google Scholar

[16]

A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal., 6 (1995), 357-370.  doi: 10.12775/TMNA.1995.050.  Google Scholar

[17]

P. Lindqvist, On the equation div $ (|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u =0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[18]

B. Pellacci and M. Squassina, Unbounded critical points for a class of lower semicontinuous functionals, J. Differential Equations, 201 (2004), 25-62.  doi: 10.1016/j.jde.2004.03.002.  Google Scholar

[19]

P. Pucci and V. Rădulescu, Combined effects in quasilinear elliptic problems with lack of compactness, Rend. Lincei Mat. Appl., 22 (2011), 189-205.  doi: 10.4171/RLM/595.  Google Scholar

[20]

N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math., 20 (1967), 721-747.  doi: 10.1002/cpa.3160200406.  Google Scholar

[1]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[2]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[3]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[4]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[5]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241

[6]

Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099

[7]

Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276

[8]

Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020154

[9]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[12]

Claudianor Oliveira Alves, Paulo Cesar Carrião, Olímpio Hiroshi Miyagaki. Signed solution for a class of quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (4) : 531-545. doi: 10.3934/cpaa.2002.1.531

[13]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[14]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[15]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[16]

Fang-Fang Liao, Chun-Lei Tang. Four positive solutions of a quasilinear elliptic equation in $ R^N$. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2577-2600. doi: 10.3934/cpaa.2013.12.2577

[17]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[18]

Ricai Luo, Honglei Xu, Wu-Sheng Wang, Jie Sun, Wei Xu. A weak condition for global stability of delayed neural networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 505-514. doi: 10.3934/jimo.2016.12.505

[19]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[20]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

2018 Impact Factor: 0.545

Article outline

[Back to Top]