July  2020, 13(7): 1947-1955. doi: 10.3934/dcdss.2020152

Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result

Department of Mathematics and Computer Science, University of Perugia, Perugia, 060123, Italy

Dedicated to Professor Patrizia Pucci for her 65th birthday anniversary

Received  September 2018 Revised  October 2018 Published  November 2019

The existence of $ L^{2} $-nonnegative solutions for nonlinear quadratic integral equations on a bounded closed interval is investigated. Two existence results for different classes of functions are shown. As a consequence an existence theorem for the Chandrasekhar integral quadratic equation, well-known in theory of radiative transfer, is obtained. The aim is achieved by means of a new fixed point theorem for multimaps in locally convex linear topological spaces.

Citation: Tiziana Cardinali, Paola Rubbioni. Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1947-1955. doi: 10.3934/dcdss.2020152
References:
[1]

J. BanaśM. Lecko and W. G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl., 222 (1998), 276-285.  doi: 10.1006/jmaa.1998.5941.  Google Scholar

[2]

J. Banaś and A .Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 47 (2004), 271-279.  doi: 10.1016/S0898-1221(04)90024-7.  Google Scholar

[3]

A. BellourD. O'Regan and M.-A. Taoudi, On the existence of integrable solutions for a nonlinear quadratic integral equation, J. Appl. Math. Comput., 46 (2014), 67-77.  doi: 10.1007/s12190-013-0737-2.  Google Scholar

[4]

V. C. Boffi and G. Spiga, Nonlinear removal effects in time-dependent particle transport theory, Z. Angew. Math. Phys., 34 (1983), 347-357.  doi: 10.1007/BF00944855.  Google Scholar

[5]

V. C. Boffi and G. Spiga, An equation of Hammerstein type arising in particle transport theory, J. Math. Phys., 24 (1983), 1625-1629.  doi: 10.1063/1.525857.  Google Scholar

[6] L. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Univesrity Press, Cambridge, 1960.   Google Scholar
[7]

J. CaballeroD. O'Regan and K. Sadarangani, On solutions of an integral equation related to traffic flow on unbounded domains, Arch. Math. (Basel), 82 (2004), 551-563.  doi: 10.1007/s00013-003-0609-3.  Google Scholar

[8]

T. CardinaliD. O'Regan and P. Rubbioni, Mönch sets and fixed point theorems for multimaps in locally convex topological vector spaces, Fixed Point Theory, 18 (2017), 147-153.  doi: 10.24193/fpt-ro.2017.1.12.  Google Scholar

[9]

T. Cardinali and F. Papalini, Fixed point theorems for multifunctions in topological vector spaces, J. Math. Anal. Appl., 186 (1994), 769-777.  doi: 10.1006/jmaa.1994.1332.  Google Scholar

[10]

S. Chandrasekhar, Radiative Transfer, Dover Publications Inc., New York, 1960.  Google Scholar

[11]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[12]

A. M. A. El-SayedH. H. G. Hashem and E. A. A. Ziada, Picard and Adomian methods for quadratic integral equation, Comput. Appl. Math., 29 (2010), 447-463.  doi: 10.1590/S1807-03022010000300007.  Google Scholar

[13]

R. Figueroa and G. Infante, A Schauder-type theorem for discontinuous operators with applications to second-order BVPs, Fixed Point Theory Appl., (2016), 11 pp. doi: 10.1186/s13663-016-0547-y.  Google Scholar

[14]

S. C. HuM. Khavanin and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261-266.  doi: 10.1080/00036818908839899.  Google Scholar

[15]

Z. Q. Liu and S. M. Kang, Existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type, Rocky Mountain J. Math., 37 (2007), 1971-1980.  doi: 10.1216/rmjm/1199649833.  Google Scholar

[16]

R. López Pouso, Schauder's fixed-point theorem: New applications and a new version for discontinuous operators, Bound. Value Probl., 2012 (2012), 14 pp. doi: 10.1186/1687-2770-2012-92.  Google Scholar

[17]

H. H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.  Google Scholar

show all references

References:
[1]

J. BanaśM. Lecko and W. G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl., 222 (1998), 276-285.  doi: 10.1006/jmaa.1998.5941.  Google Scholar

[2]

J. Banaś and A .Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl., 47 (2004), 271-279.  doi: 10.1016/S0898-1221(04)90024-7.  Google Scholar

[3]

A. BellourD. O'Regan and M.-A. Taoudi, On the existence of integrable solutions for a nonlinear quadratic integral equation, J. Appl. Math. Comput., 46 (2014), 67-77.  doi: 10.1007/s12190-013-0737-2.  Google Scholar

[4]

V. C. Boffi and G. Spiga, Nonlinear removal effects in time-dependent particle transport theory, Z. Angew. Math. Phys., 34 (1983), 347-357.  doi: 10.1007/BF00944855.  Google Scholar

[5]

V. C. Boffi and G. Spiga, An equation of Hammerstein type arising in particle transport theory, J. Math. Phys., 24 (1983), 1625-1629.  doi: 10.1063/1.525857.  Google Scholar

[6] L. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Univesrity Press, Cambridge, 1960.   Google Scholar
[7]

J. CaballeroD. O'Regan and K. Sadarangani, On solutions of an integral equation related to traffic flow on unbounded domains, Arch. Math. (Basel), 82 (2004), 551-563.  doi: 10.1007/s00013-003-0609-3.  Google Scholar

[8]

T. CardinaliD. O'Regan and P. Rubbioni, Mönch sets and fixed point theorems for multimaps in locally convex topological vector spaces, Fixed Point Theory, 18 (2017), 147-153.  doi: 10.24193/fpt-ro.2017.1.12.  Google Scholar

[9]

T. Cardinali and F. Papalini, Fixed point theorems for multifunctions in topological vector spaces, J. Math. Anal. Appl., 186 (1994), 769-777.  doi: 10.1006/jmaa.1994.1332.  Google Scholar

[10]

S. Chandrasekhar, Radiative Transfer, Dover Publications Inc., New York, 1960.  Google Scholar

[11]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4419-9158-4.  Google Scholar

[12]

A. M. A. El-SayedH. H. G. Hashem and E. A. A. Ziada, Picard and Adomian methods for quadratic integral equation, Comput. Appl. Math., 29 (2010), 447-463.  doi: 10.1590/S1807-03022010000300007.  Google Scholar

[13]

R. Figueroa and G. Infante, A Schauder-type theorem for discontinuous operators with applications to second-order BVPs, Fixed Point Theory Appl., (2016), 11 pp. doi: 10.1186/s13663-016-0547-y.  Google Scholar

[14]

S. C. HuM. Khavanin and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261-266.  doi: 10.1080/00036818908839899.  Google Scholar

[15]

Z. Q. Liu and S. M. Kang, Existence of monotone solutions for a nonlinear quadratic integral equation of Volterra type, Rocky Mountain J. Math., 37 (2007), 1971-1980.  doi: 10.1216/rmjm/1199649833.  Google Scholar

[16]

R. López Pouso, Schauder's fixed-point theorem: New applications and a new version for discontinuous operators, Bound. Value Probl., 2012 (2012), 14 pp. doi: 10.1186/1687-2770-2012-92.  Google Scholar

[17]

H. H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[10]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[13]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[14]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (116)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]