doi: 10.3934/dcdss.2020154

Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition

Departamento de Matemática, Universidade Estadual de Campinas, IMECC, Rua Sérgio Buarque de Holanda, 651, Campinas, SP CEP 13083–859, Brazil

Dedicated to Professor Patrizia Pucci on the occasion of her 65th birthday, with great affection and esteem

Received  May 2018 Revised  October 2018 Published  November 2019

This paper is devoted to the study of the following Schrödinger–Kirchhoff–Hardy equation in
$ \mathbb R^n $
$ M\left(\iint_{\mathbb R^{2n}}\frac{|u(x)-u(y)|^p}{|x-y|^{n+ps}}dxdy\right)(-\Delta)^{s}_pu+V(x)|u|^{p-2}u-\mu\frac{|u|^{p-2}u}{|x|^{ps}} = f(x, u), $
where
$ (-\Delta)^s_p $
is the fractional
$ p $
–Laplacian, with
$ s\in(0, 1) $
and
$ p>1 $
, dimension
$ n>ps $
,
$ M $
models a Kirchhoff coefficient,
$ V $
is a positive potential,
$ f $
is a continuous nonlinearity and
$ \mu $
is a real parameter. The main feature of the paper is the combination of a Kirchhoff coefficient and a Hardy term with a suitable function
$ f $
which does not necessarily satisfy the Ambrosetti–Rabinowitz condition. Under different assumptions for
$ f $
and restrictions for
$ \mu $
, we provide existence and multiplicity results by variational methods.
Citation: Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020154
References:
[1]

V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differential Equations, 2016 (2016), 12 pp.  Google Scholar

[2]

G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.  doi: 10.1007/s00030-012-0193-y.  Google Scholar

[3]

G. AutuoriP. Pucci and C. Varga, Existence theorems for quasilinear elliptic eigenvalue problems in unbounded domains, Adv. Differential Equations, 18 (2013), 1-48.   Google Scholar

[4]

T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205-1216.  doi: 10.1016/0362-546X(93)90151-H.  Google Scholar

[5]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[6]

Z. BinlinG. Molica Bisci and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 28 (2015), 2247-2264.  doi: 10.1088/0951-7715/28/7/2247.  Google Scholar

[7]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[8]

M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x.  Google Scholar

[9]

D. G. Costa and O. H. Miyagaki, Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains, J. Math. Anal. Appl., 193 (1995), 737-755.  doi: 10.1006/jmaa.1995.1264.  Google Scholar

[10]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete(3), 19, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.  Google Scholar

[11]

A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017), 350-378.  doi: 10.1016/j.nonrwa.2016.11.004.  Google Scholar

[12]

A. Fiscella and P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017), 429-456.  doi: 10.1515/ans-2017-6021.  Google Scholar

[13]

A. FiscellaP. Pucci and S. Saldi, Existence of entire solutions for Schrödinger-Hardy systems involving two fractional operators, Nonlinear Anal., 158 (2017), 109-131.  doi: 10.1016/j.na.2017.04.005.  Google Scholar

[14]

A. FiscellaP. Pucci and B. L. Zhang, p-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), 1111-1131.  doi: 10.1515/anona-2018-0033.  Google Scholar

[15]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[16]

X. MingqiV. D. Radulescu and B. L. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM Control Optim. Calc. Var., 24 (2018), 1249-1273.  doi: 10.1051/cocv/2017036.  Google Scholar

[17]

G. Molica BisciD. Repovš and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016), 1095-1110.  doi: 10.1515/forum-2015-0204.  Google Scholar

[18]

D. Mugnai and N. S. Papageorgiu, Wang's multiplicity result for superlinear (p, q)-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc., 366 (2014), 4919-4937.  doi: 10.1090/S0002-9947-2013-06124-7.  Google Scholar

[19]

P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62 (2018), 3-36.  doi: 10.5565/PUBLMAT6211801.  Google Scholar

[20]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb R^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[21]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[22]

L. Y. Shao and H. B. Chen, Ground state of solutions for a class of fractional Schrödinger equations with critical Sobolev exponent and steep potential well, Math. Methods Appl. Sci., 40 (2017), 7255-7266.  doi: 10.1002/mma.4527.  Google Scholar

[23]

Y. H. Wei and X. F. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124.  doi: 10.1007/s00526-013-0706-5.  Google Scholar

[24]

M. Q. XiangB. L. Zhang and M. M. Yang, A fractional Kirchhoff-type problem in $\mathbb R^N$ without the (AR) condition, Complex Var. Elliptic Equ., 61 (2016), 1481-1493.  doi: 10.1080/17476933.2016.1182519.  Google Scholar

[25]

J. ZhangZ. L. LouY. J. Ji and W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 462 (2018), 57-83.  doi: 10.1016/j.jmaa.2018.01.060.  Google Scholar

[26]

Y. P. Zhang, X. H. Tang and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian with sign-changing potential, Electron. J. Differential Equations, 2017 (2017), 14 pp.  Google Scholar

show all references

References:
[1]

V. Ambrosio, Multiple solutions for a fractional p-Laplacian equation with sign-changing potential, Electron. J. Differential Equations, 2016 (2016), 12 pp.  Google Scholar

[2]

G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.  doi: 10.1007/s00030-012-0193-y.  Google Scholar

[3]

G. AutuoriP. Pucci and C. Varga, Existence theorems for quasilinear elliptic eigenvalue problems in unbounded domains, Adv. Differential Equations, 18 (2013), 1-48.   Google Scholar

[4]

T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205-1216.  doi: 10.1016/0362-546X(93)90151-H.  Google Scholar

[5]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.  Google Scholar

[6]

Z. BinlinG. Molica Bisci and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 28 (2015), 2247-2264.  doi: 10.1088/0951-7715/28/7/2247.  Google Scholar

[7]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[8]

M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x.  Google Scholar

[9]

D. G. Costa and O. H. Miyagaki, Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains, J. Math. Anal. Appl., 193 (1995), 737-755.  doi: 10.1006/jmaa.1995.1264.  Google Scholar

[10]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete(3), 19, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.  Google Scholar

[11]

A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017), 350-378.  doi: 10.1016/j.nonrwa.2016.11.004.  Google Scholar

[12]

A. Fiscella and P. Pucci, Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17 (2017), 429-456.  doi: 10.1515/ans-2017-6021.  Google Scholar

[13]

A. FiscellaP. Pucci and S. Saldi, Existence of entire solutions for Schrödinger-Hardy systems involving two fractional operators, Nonlinear Anal., 158 (2017), 109-131.  doi: 10.1016/j.na.2017.04.005.  Google Scholar

[14]

A. FiscellaP. Pucci and B. L. Zhang, p-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8 (2019), 1111-1131.  doi: 10.1515/anona-2018-0033.  Google Scholar

[15]

V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.  Google Scholar

[16]

X. MingqiV. D. Radulescu and B. L. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM Control Optim. Calc. Var., 24 (2018), 1249-1273.  doi: 10.1051/cocv/2017036.  Google Scholar

[17]

G. Molica BisciD. Repovš and R. Servadei, Nontrivial solutions of superlinear nonlocal problems, Forum Math., 28 (2016), 1095-1110.  doi: 10.1515/forum-2015-0204.  Google Scholar

[18]

D. Mugnai and N. S. Papageorgiu, Wang's multiplicity result for superlinear (p, q)-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc., 366 (2014), 4919-4937.  doi: 10.1090/S0002-9947-2013-06124-7.  Google Scholar

[19]

P. Piersanti and P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62 (2018), 3-36.  doi: 10.5565/PUBLMAT6211801.  Google Scholar

[20]

P. PucciM. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb R^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.  doi: 10.1007/s00526-015-0883-5.  Google Scholar

[21]

P. PucciM. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27-55.  doi: 10.1515/anona-2015-0102.  Google Scholar

[22]

L. Y. Shao and H. B. Chen, Ground state of solutions for a class of fractional Schrödinger equations with critical Sobolev exponent and steep potential well, Math. Methods Appl. Sci., 40 (2017), 7255-7266.  doi: 10.1002/mma.4527.  Google Scholar

[23]

Y. H. Wei and X. F. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations, 52 (2015), 95-124.  doi: 10.1007/s00526-013-0706-5.  Google Scholar

[24]

M. Q. XiangB. L. Zhang and M. M. Yang, A fractional Kirchhoff-type problem in $\mathbb R^N$ without the (AR) condition, Complex Var. Elliptic Equ., 61 (2016), 1481-1493.  doi: 10.1080/17476933.2016.1182519.  Google Scholar

[25]

J. ZhangZ. L. LouY. J. Ji and W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 462 (2018), 57-83.  doi: 10.1016/j.jmaa.2018.01.060.  Google Scholar

[26]

Y. P. Zhang, X. H. Tang and J. Zhang, Existence of infinitely many solutions for fractional p-Laplacian with sign-changing potential, Electron. J. Differential Equations, 2017 (2017), 14 pp.  Google Scholar

[1]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[2]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[3]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[4]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[5]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[6]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[7]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[8]

John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533

[9]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[10]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[11]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[12]

Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148

[13]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

[14]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[15]

Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure & Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771

[16]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[17]

Yucheng Bu, Yujun Dong. Existence of solutions for nonlinear operator equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4429-4441. doi: 10.3934/dcds.2019180

[18]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[19]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[20]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

2018 Impact Factor: 0.545

Article outline

[Back to Top]