This paper deals with existence and regularity in variational problems related to partial differential equations and systems - both in the elliptic and in the parabolic contexts - and to calculus of variations, under general and $ p,q- $ growth conditions. The manuscript is dedicated to my friend and colleague Patrizia Pucci, with great esteem and sympathy.
Citation: |
[1] | G. Autuori and P. Pucci, Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ., 56 (2011), 715-753. doi: 10.1080/17476931003786691. |
[2] | J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1976/77), 337-403. doi: 10.1007/BF00279992. |
[3] | J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. Ser. A, 306 (1982), 557-611. doi: 10.1098/rsta.1982.0095. |
[4] | P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206-222. doi: 10.1016/j.na.2014.11.001. |
[5] | P. Baroni, M. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347-379. doi: 10.1090/spmj/1392. |
[6] | P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018), Art. 62, 48 pp. doi: 10.1007/s00526-018-1332-z. |
[7] | L. Beck and G. Mingione, Lipschitz bounds and non-uniformly ellipticity, in preparation, 2018. |
[8] | M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003. doi: 10.1007/b12308. |
[9] | I. Birindelli and F. Demengel, Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 41, 17 pp. doi: 10.1007/s00030-016-0392-z. |
[10] | L. Boccardo, P. Marcellini and C. Sbordone, $L^\infty$-regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219-225. doi: 10.1007/bf01934372. |
[11] | L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in $L^1$, Differential Integral Equations, 9 (1996), 209-212. |
[12] | V. Bögelein, F. Duzaar and P. Marcellini, Parabolic equations with $p, q$-growth, Journal de Mathématiques Pures et Appliquées, 100 (2013), 535-563. doi: 10.1016/j.matpur.2013.01.012. |
[13] | V. Bögelein, F. Duzaar and P. Marcellini, Parabolic systems with $p, q-$growth: A variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267. doi: 10.1007/s00205-013-0646-4. |
[14] | V. Bögelein, F. Duzaar and P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations, 256 (2014), 3912-3942. doi: 10.1016/j.jde.2014.03.005. |
[15] | V. Bögelein, F. Duzaar and P. Marcellini, A time dependent variational approach to image restoration, SIAM J. on Imaging Sciences, 8 (2015), 968-1006. doi: 10.1137/140992771. |
[16] | V. Bögelein, F. Duzaar, P. Marcellini and C. Scheven, Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., 229 (2018), 503-545. doi: 10.1007/s00205-018-1221-9. |
[17] | V. Bögelein, F. Duzaar, P. Marcellini and C. Scheven, A variational approach to doubly nonlinear equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 29 (2018), 739-772. doi: 10.4171/RLM/832. |
[18] | V. Bögelein, F. Duzaar, P. Marcellini and S. Signoriello, Nonlocal diffusion equations, J. Math. Anal. Appl., 432 (2015), 398-428. doi: 10.1016/j.jmaa.2015.06.053. |
[19] | V. Bögelein, F. Duzaar, P. Marcellini and S. Signoriello, Parabolic equations and the bounded slope condition, Ann. Inst. H. Poincare, Anal. Non Lineaire, 34 (2017), 355-379. doi: 10.1016/j.anihpc.2015.12.005. |
[20] | B. Botteron and P. Marcellini, A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 197-223. doi: 10.1016/S0294-1449(16)30272-4. |
[21] | L. Brasco and G. Carlier, On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds, Adv. Calc. Var., 7 (2014), 379-407. doi: 10.1515/acv-2013-0007. |
[22] | P. Celada and S. Perrotta, Polyconvex energies and cavitation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 295-321. doi: 10.1007/s00030-012-0184-z. |
[23] | I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Analysis, 175 (1918), 1-27. doi: 10.1016/j.na.2018.05.003. |
[24] | F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974. doi: 10.1016/j.na.2011.05.073. |
[25] | M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal., 215 (2015), 443-496. doi: 10.1007/s00205-014-0785-2. |
[26] | M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rat. Mech. Anal., 218 (2015), 219-273. doi: 10.1007/s00205-015-0859-9. |
[27] | G. Cupini, F. Giannetti, R. Giova and A. Passarelli di Napoli, Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients, Nonlinear Anal., 154 (2017), 7-24. doi: 10.1016/j.na.2016.02.017. |
[28] | G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with $p-q$ growth, Nonlinear Anal., 54 (2003), 591-616. doi: 10.1016/S0362-546X(03)00087-7. |
[29] | G. Cupini, P. Marcellini and E. Mascolo, Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 66-86. doi: 10.3934/dcdsb.2009.11.67. |
[30] | G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math., 137 (2012), 287-315. doi: 10.1007/s00229-011-0464-7. |
[31] | G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems, Recent Trends in Nonlinear Partial Differential Equations. II. Stationary problems, Contemp. Math., Amer. Math. Soc., Providence, RI, 595 (2013), 169-186. doi: 10.1090/conm/595/11803. |
[32] | G. Cupini, P. Marcellini and E. Mascolo, Existence and regularity for elliptic equations under $p, q$-growth, Adv. Differential Equations, 19 (2014), 693-724. |
[33] | G. Cupini, P. Marcellini and E. Mascolo, Local boundedness of minimizers with limit growth conditions, J. Optim. Theory Appl., 166 (2015), 1-22. doi: 10.1007/s10957-015-0722-z. |
[34] | G. Cupini, P. Marcellini and E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Analysis, 153 (2017), 294-310. doi: 10.1016/j.na.2016.06.002. |
[35] | G. Cupini, P. Marcellini and E. Mascolo, Nonuniformly elliptic energy integrals with $p, q$-growth, Nonlinear Analysis, 177 (2018), 312-324. doi: 10.1016/j.na.2018.03.018. |
[36] | E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli, Mem. Accad. Sci. Torino, cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25-43. |
[37] | F. Demengel, Regularity properties of viscosity solutions for fully nonlinear equations on the model of the anisotropic $p$-Laplacian, Asymptot. Anal., 105 (2017), 27-43. doi: 10.3233/ASY-171433. |
[38] | E. DiBenedetto, $\mathcal{C}^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. doi: 10.1016/0362-546X(83)90061-5. |
[39] | E. DiBenedetto, U. Gianazza and V. Vespri, Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic $p$-Laplacian type equations, J. Elliptic Parabol. Equ., 2 (2016), 157-169. doi: 10.1007/BF03377399. |
[40] | L. Diening, P. Harjulehto, P. Hästöand M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8. |
[41] | G. F. Düzgun, P. Marcellini and V. Vespri, Space expansion for a solution of an anisotropic $p$-Laplacian equation by using a parabolic approach, Riv. Math. Univ. Parma (N.S.), 5 (2014), 93-111. |
[42] | G. Düzgun, P. Marcellini and V. Vespri, An alternative approach to the Hölder continuity of solutions to some elliptic equations, Nonlinear Anal., 94 (2014), 133-141. doi: 10.1016/j.na.2013.08.018. |
[43] | M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura Appl., 195 (2016), 1575-1603. doi: 10.1007/s10231-015-0529-4. |
[44] | M. Eleuteri, P. Marcellini and E. Mascolo, Lipschitz continuity for functionals with variable exponents, Rend. Lincei Mat. Appl., 27 (2016), 61-87. doi: 10.4171/RLM/723. |
[45] | M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions, Advances in Calculus of Variations, (2018). doi: 10.1515/acv-2017-0037. |
[46] | M. Eleuteri, P. Marcellini and E. Mascolo, Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 251-265. doi: 10.3934/dcdss.2019018. |
[47] | M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 115, 29 pp. doi: 10.1007/s00526-018-1387-x. |
[48] | L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p, q)$ growth, Forum Math., 14 (2002), 245-272. doi: 10.1515/form.2002.011. |
[49] | L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55. doi: 10.1016/j.jde.2003.11.007. |
[50] | A. Esposito, F. Leonetti and P. Vincenzo Petricca, Absence of Lavrentiev gap for non-autonomous functionals with $(p, q)$-growth, Adv. Nonlinear Anal., 8 (2019), 73-78. doi: 10.1515/anona-2016-0198. |
[51] | M. Focardi and E. Mascolo, Lower semicontinuity of quasi-convex functionals with non-standard growth, J. Convex Anal., 8 (2001), 327-347. |
[52] | I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 69-95. doi: 10.1051/cocv:2002004. |
[53] | R. Fortini, D. Mugnai and P. Pucci, Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal., 70 (2009), 2917-2929. doi: 10.1016/j.na.2008.12.030. |
[54] | G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228. doi: 10.1016/j.jmaa.2009.12.039. |
[55] | N. Fusco, P. Marcellini and A. Ornelas, Existence of minimizers for some non convex one-dimensional integrals, Portugaliae Mathematica, 55 (1998), 167-185. |
[56] | M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. |
[57] | M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248. doi: 10.1007/BF01158049. |
[58] | E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/9789812795557. |
[59] | P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, 2236. Springer, Cham, 2019. doi: 10.1007/978-3-030-15100-3. |
[60] | M. C. Hong, Some remarks on the minimizers of variational integrals wtih non standard growth conditions, Boll. Un. Mat. Ital. A, 6 (1992), 91-101. |
[61] | M. A. Krasnosel'skij and J. B. Ruticki$\check{{\rm i}}$, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961. |
[62] | O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968. |
[63] | V. Liskevich and I. I. Skrypnik, Hölder continuity of solutions to an anisotropic elliptic equation, Nonlinear Analysis, 71 (2009), 1699-1708. doi: 10.1016/j.na.2009.01.007. |
[64] | J. J. Liu, P. Pucci, H. T. Wu and Q. H. Zhang, Existence and blow-up rate of large solutions of $p(x)$-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457 (2018), 944-977. doi: 10.1016/j.jmaa.2017.08.038. |
[65] | P. Marcellini, Quasiconvex quadratic forms in two dimensions, Applied Mathematics and Optimization, 11 (1984), 183-189. doi: 10.1007/BF01442177. |
[66] | P. Marcellini, Un example de solution discontinue d'un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico, "U.Dini", Università di Firenze, 1987. http://web.math.unifi.it/users/marcellini/lavori/reprints/ |
[67] | P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity, Partial Differential Equations and the Calculus of Variations, Vol. II, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2 (1989), 767-786. |
[68] | P. Marcellini, Nonconvex integrals of the calculus of variations, Methods of Nonconvex Analysis (Varenna, 1989), Lecture Notes in Math., Springer, Berlin, 1446 (1990), 16-57. doi: 10.1007/BFb0084930. |
[69] | P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. doi: 10.1007/BF00251503. |
[70] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30. doi: 10.1016/0022-0396(91)90158-6. |
[71] | P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations, 105 (1993), 296-333. doi: 10.1006/jdeq.1993.1091. |
[72] | P. Marcellini, Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., 90 (1996), 161-181. doi: 10.1007/BF02192251. |
[73] | P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 1-25. |
[74] | P. Marcellini, Some recent developments in the study of Hilbert's 19th and 20th problems, Boll. Un. Mat. Ital. A (7), 11 (1997), 323-352. |
[75] | P. Marcellini, A variational approach to parabolic equations under general and $p, q$-growth conditions, Nonlinear Anal., (2019). doi: 10.1016/j.na.2019.02.010. |
[76] | P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Differential Equations, 221 (2006), 412-443. doi: 10.1016/j.jde.2004.11.011. |
[77] | M. Mihailescu, P. Pucci and V. Rǎdulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, 345 (2007), 561-566. doi: 10.1016/j.crma.2007.10.012. |
[78] | M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698. doi: 10.1016/j.jmaa.2007.09.015. |
[79] | G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426. doi: 10.1007/s10778-006-0110-3. |
[80] | A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Advances in Calculus of Variations, 7 (2014), 59-89. doi: 10.1515/acv-2012-0006. |
[81] | S. Piro Vernier, F. Ragnedda and V. Vespri, Hölder regularity for bounded solutions to a class of anisotropic operators, Manuscripta Math., 158 (2019), 421-439. doi: 10.1007/s00229-018-1034-z. |
[82] | P. Pucci and Q. H. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566. doi: 10.1016/j.jde.2014.05.023. |
[83] | K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. doi: 10.1007/BF02392316. |
[84] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877. |
[85] | V. V. Zhikov, On Lavrentiev phenomenon, Russian J. Math. Phys., 3 (1995), 249-269. |
[86] | V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. |