• Previous Article
    Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result
doi: 10.3934/dcdss.2020155

Regularity under general and $ p,q- $ growth conditions

Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Viale Morgagni 67/A, 50134 - Firenze, Italy

Received  July 2018 Revised  July 2018 Published  November 2019

Fund Project: The author is a member of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica)

This paper deals with existence and regularity in variational problems related to partial differential equations and systems - both in the elliptic and in the parabolic contexts - and to calculus of variations, under general and $ p,q- $ growth conditions. The manuscript is dedicated to my friend and colleague Patrizia Pucci, with great esteem and sympathy.

Citation: Paolo Marcellini. Regularity under general and $ p,q- $ growth conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020155
References:
[1]

G. Autuori and P. Pucci, Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ., 56 (2011), 715-753.  doi: 10.1080/17476931003786691.  Google Scholar

[2]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1976/77), 337-403.  doi: 10.1007/BF00279992.  Google Scholar

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. Ser. A, 306 (1982), 557-611.  doi: 10.1098/rsta.1982.0095.  Google Scholar

[4]

P. BaroniM. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206-222.  doi: 10.1016/j.na.2014.11.001.  Google Scholar

[5]

P. BaroniM. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347-379.  doi: 10.1090/spmj/1392.  Google Scholar

[6]

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018), Art. 62, 48 pp. doi: 10.1007/s00526-018-1332-z.  Google Scholar

[7]

L. Beck and G. Mingione, Lipschitz bounds and non-uniformly ellipticity, in preparation, 2018. Google Scholar

[8]

M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003. doi: 10.1007/b12308.  Google Scholar

[9]

I. Birindelli and F. Demengel, Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 41, 17 pp. doi: 10.1007/s00030-016-0392-z.  Google Scholar

[10]

L. BoccardoP. Marcellini and C. Sbordone, $L^\infty$-regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219-225.  doi: 10.1007/bf01934372.  Google Scholar

[11]

L. BoccardoT. Gallouët and P. Marcellini, Anisotropic equations in $L^1$, Differential Integral Equations, 9 (1996), 209-212.   Google Scholar

[12]

V. BögeleinF. Duzaar and P. Marcellini, Parabolic equations with $p, q$-growth, Journal de Mathématiques Pures et Appliquées, 100 (2013), 535-563.  doi: 10.1016/j.matpur.2013.01.012.  Google Scholar

[13]

V. BögeleinF. Duzaar and P. Marcellini, Parabolic systems with $p, q-$growth: A variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267.  doi: 10.1007/s00205-013-0646-4.  Google Scholar

[14]

V. BögeleinF. Duzaar and P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations, 256 (2014), 3912-3942.  doi: 10.1016/j.jde.2014.03.005.  Google Scholar

[15]

V. BögeleinF. Duzaar and P. Marcellini, A time dependent variational approach to image restoration, SIAM J. on Imaging Sciences, 8 (2015), 968-1006.  doi: 10.1137/140992771.  Google Scholar

[16]

V. BögeleinF. DuzaarP. Marcellini and C. Scheven, Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., 229 (2018), 503-545.  doi: 10.1007/s00205-018-1221-9.  Google Scholar

[17]

V. BögeleinF. DuzaarP. Marcellini and C. Scheven, A variational approach to doubly nonlinear equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 29 (2018), 739-772.  doi: 10.4171/RLM/832.  Google Scholar

[18]

V. BögeleinF. DuzaarP. Marcellini and S. Signoriello, Nonlocal diffusion equations, J. Math. Anal. Appl., 432 (2015), 398-428.  doi: 10.1016/j.jmaa.2015.06.053.  Google Scholar

[19]

V. BögeleinF. DuzaarP. Marcellini and S. Signoriello, Parabolic equations and the bounded slope condition, Ann. Inst. H. Poincare, Anal. Non Lineaire, 34 (2017), 355-379.  doi: 10.1016/j.anihpc.2015.12.005.  Google Scholar

[20]

B. Botteron and P. Marcellini, A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 197-223.  doi: 10.1016/S0294-1449(16)30272-4.  Google Scholar

[21]

L. Brasco and G. Carlier, On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds, Adv. Calc. Var., 7 (2014), 379-407.  doi: 10.1515/acv-2013-0007.  Google Scholar

[22]

P. Celada and S. Perrotta, Polyconvex energies and cavitation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 295-321.  doi: 10.1007/s00030-012-0184-z.  Google Scholar

[23]

I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Analysis, 175 (1918), 1-27.  doi: 10.1016/j.na.2018.05.003.  Google Scholar

[24]

F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.  doi: 10.1016/j.na.2011.05.073.  Google Scholar

[25]

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal., 215 (2015), 443-496.  doi: 10.1007/s00205-014-0785-2.  Google Scholar

[26]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rat. Mech. Anal., 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[27]

G. CupiniF. GiannettiR. Giova and A. Passarelli di Napoli, Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients, Nonlinear Anal., 154 (2017), 7-24.  doi: 10.1016/j.na.2016.02.017.  Google Scholar

[28]

G. CupiniM. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with $p-q$ growth, Nonlinear Anal., 54 (2003), 591-616.  doi: 10.1016/S0362-546X(03)00087-7.  Google Scholar

[29]

G. CupiniP. Marcellini and E. Mascolo, Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 66-86.  doi: 10.3934/dcdsb.2009.11.67.  Google Scholar

[30]

G. CupiniP. Marcellini and E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math., 137 (2012), 287-315.  doi: 10.1007/s00229-011-0464-7.  Google Scholar

[31]

G. CupiniP. Marcellini and E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems, Recent Trends in Nonlinear Partial Differential Equations. II. Stationary problems, Contemp. Math., Amer. Math. Soc., Providence, RI, 595 (2013), 169-186.  doi: 10.1090/conm/595/11803.  Google Scholar

[32]

G. CupiniP. Marcellini and E. Mascolo, Existence and regularity for elliptic equations under $p, q$-growth, Adv. Differential Equations, 19 (2014), 693-724.   Google Scholar

[33]

G. CupiniP. Marcellini and E. Mascolo, Local boundedness of minimizers with limit growth conditions, J. Optim. Theory Appl., 166 (2015), 1-22.  doi: 10.1007/s10957-015-0722-z.  Google Scholar

[34]

G. CupiniP. Marcellini and E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Analysis, 153 (2017), 294-310.  doi: 10.1016/j.na.2016.06.002.  Google Scholar

[35]

G. CupiniP. Marcellini and E. Mascolo, Nonuniformly elliptic energy integrals with $p, q$-growth, Nonlinear Analysis, 177 (2018), 312-324.  doi: 10.1016/j.na.2018.03.018.  Google Scholar

[36]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli, Mem. Accad. Sci. Torino, cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25-43.   Google Scholar

[37]

F. Demengel, Regularity properties of viscosity solutions for fully nonlinear equations on the model of the anisotropic $p$-Laplacian, Asymptot. Anal., 105 (2017), 27-43.  doi: 10.3233/ASY-171433.  Google Scholar

[38]

E. DiBenedetto, $\mathcal{C}^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[39]

E. DiBenedettoU. Gianazza and V. Vespri, Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic $p$-Laplacian type equations, J. Elliptic Parabol. Equ., 2 (2016), 157-169.  doi: 10.1007/BF03377399.  Google Scholar

[40]

L. Diening, P. Harjulehto, P. Hästöand M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[41]

G. F. DüzgunP. Marcellini and V. Vespri, Space expansion for a solution of an anisotropic $p$-Laplacian equation by using a parabolic approach, Riv. Math. Univ. Parma (N.S.), 5 (2014), 93-111.   Google Scholar

[42]

G. DüzgunP. Marcellini and V. Vespri, An alternative approach to the Hölder continuity of solutions to some elliptic equations, Nonlinear Anal., 94 (2014), 133-141.  doi: 10.1016/j.na.2013.08.018.  Google Scholar

[43]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura Appl., 195 (2016), 1575-1603.  doi: 10.1007/s10231-015-0529-4.  Google Scholar

[44]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz continuity for functionals with variable exponents, Rend. Lincei Mat. Appl., 27 (2016), 61-87.  doi: 10.4171/RLM/723.  Google Scholar

[45]

M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions, Advances in Calculus of Variations, (2018). doi: 10.1515/acv-2017-0037.  Google Scholar

[46]

M. EleuteriP. Marcellini and E. Mascolo, Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 251-265.  doi: 10.3934/dcdss.2019018.  Google Scholar

[47]

M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 115, 29 pp. doi: 10.1007/s00526-018-1387-x.  Google Scholar

[48]

L. EspositoF. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p, q)$ growth, Forum Math., 14 (2002), 245-272.  doi: 10.1515/form.2002.011.  Google Scholar

[49]

L. EspositoF. Leonetti and G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55.  doi: 10.1016/j.jde.2003.11.007.  Google Scholar

[50]

A. EspositoF. Leonetti and P. Vincenzo Petricca, Absence of Lavrentiev gap for non-autonomous functionals with $(p, q)$-growth, Adv. Nonlinear Anal., 8 (2019), 73-78.  doi: 10.1515/anona-2016-0198.  Google Scholar

[51]

M. Focardi and E. Mascolo, Lower semicontinuity of quasi-convex functionals with non-standard growth, J. Convex Anal., 8 (2001), 327-347.   Google Scholar

[52]

I. FonsecaN. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 69-95.  doi: 10.1051/cocv:2002004.  Google Scholar

[53]

R. FortiniD. Mugnai and P. Pucci, Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal., 70 (2009), 2917-2929.  doi: 10.1016/j.na.2008.12.030.  Google Scholar

[54]

G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.  doi: 10.1016/j.jmaa.2009.12.039.  Google Scholar

[55]

N. FuscoP. Marcellini and A. Ornelas, Existence of minimizers for some non convex one-dimensional integrals, Portugaliae Mathematica, 55 (1998), 167-185.   Google Scholar

[56] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.   Google Scholar
[57]

M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248.  doi: 10.1007/BF01158049.  Google Scholar

[58]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/9789812795557.  Google Scholar

[59]

P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, 2236. Springer, Cham, 2019. doi: 10.1007/978-3-030-15100-3.  Google Scholar

[60]

M. C. Hong, Some remarks on the minimizers of variational integrals wtih non standard growth conditions, Boll. Un. Mat. Ital. A, 6 (1992), 91-101.   Google Scholar

[61]

M. A. Krasnosel'skij and J. B. Ruticki$\check{{\rm i}}$, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.  Google Scholar

[62] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[63]

V. Liskevich and I. I. Skrypnik, Hölder continuity of solutions to an anisotropic elliptic equation, Nonlinear Analysis, 71 (2009), 1699-1708.  doi: 10.1016/j.na.2009.01.007.  Google Scholar

[64]

J. J. LiuP. PucciH. T. Wu and Q. H. Zhang, Existence and blow-up rate of large solutions of $p(x)$-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457 (2018), 944-977.  doi: 10.1016/j.jmaa.2017.08.038.  Google Scholar

[65]

P. Marcellini, Quasiconvex quadratic forms in two dimensions, Applied Mathematics and Optimization, 11 (1984), 183-189.  doi: 10.1007/BF01442177.  Google Scholar

[66]

P. Marcellini, Un example de solution discontinue d'un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico, "U.Dini", Università di Firenze, 1987. http://web.math.unifi.it/users/marcellini/lavori/reprints/ Google Scholar

[67]

P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity, Partial Differential Equations and the Calculus of Variations, Vol. II, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2 (1989), 767-786.   Google Scholar

[68]

P. Marcellini, Nonconvex integrals of the calculus of variations, Methods of Nonconvex Analysis (Varenna, 1989), Lecture Notes in Math., Springer, Berlin, 1446 (1990), 16-57.  doi: 10.1007/BFb0084930.  Google Scholar

[69]

P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284.  doi: 10.1007/BF00251503.  Google Scholar

[70]

P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[71]

P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations, 105 (1993), 296-333.  doi: 10.1006/jdeq.1993.1091.  Google Scholar

[72]

P. Marcellini, Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., 90 (1996), 161-181.  doi: 10.1007/BF02192251.  Google Scholar

[73]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 1-25.   Google Scholar

[74]

P. Marcellini, Some recent developments in the study of Hilbert's 19th and 20th problems, Boll. Un. Mat. Ital. A (7), 11 (1997), 323-352.   Google Scholar

[75]

P. Marcellini, A variational approach to parabolic equations under general and $p, q$-growth conditions, Nonlinear Anal., (2019). doi: 10.1016/j.na.2019.02.010.  Google Scholar

[76]

P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Differential Equations, 221 (2006), 412-443.  doi: 10.1016/j.jde.2004.11.011.  Google Scholar

[77]

M. MihailescuP. Pucci and V. Rǎdulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, 345 (2007), 561-566.  doi: 10.1016/j.crma.2007.10.012.  Google Scholar

[78]

M. MihailescuP. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.  doi: 10.1016/j.jmaa.2007.09.015.  Google Scholar

[79]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426.  doi: 10.1007/s10778-006-0110-3.  Google Scholar

[80]

A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Advances in Calculus of Variations, 7 (2014), 59-89.  doi: 10.1515/acv-2012-0006.  Google Scholar

[81]

S. Piro VernierF. Ragnedda and V. Vespri, Hölder regularity for bounded solutions to a class of anisotropic operators, Manuscripta Math., 158 (2019), 421-439.  doi: 10.1007/s00229-018-1034-z.  Google Scholar

[82]

P. Pucci and Q. H. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.  doi: 10.1016/j.jde.2014.05.023.  Google Scholar

[83]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.  doi: 10.1007/BF02392316.  Google Scholar

[84]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877.  Google Scholar

[85]

V. V. Zhikov, On Lavrentiev phenomenon, Russian J. Math. Phys., 3 (1995), 249-269.   Google Scholar

[86]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.   Google Scholar

show all references

References:
[1]

G. Autuori and P. Pucci, Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ., 56 (2011), 715-753.  doi: 10.1080/17476931003786691.  Google Scholar

[2]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63 (1976/77), 337-403.  doi: 10.1007/BF00279992.  Google Scholar

[3]

J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. Ser. A, 306 (1982), 557-611.  doi: 10.1098/rsta.1982.0095.  Google Scholar

[4]

P. BaroniM. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206-222.  doi: 10.1016/j.na.2014.11.001.  Google Scholar

[5]

P. BaroniM. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347-379.  doi: 10.1090/spmj/1392.  Google Scholar

[6]

P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018), Art. 62, 48 pp. doi: 10.1007/s00526-018-1332-z.  Google Scholar

[7]

L. Beck and G. Mingione, Lipschitz bounds and non-uniformly ellipticity, in preparation, 2018. Google Scholar

[8]

M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003. doi: 10.1007/b12308.  Google Scholar

[9]

I. Birindelli and F. Demengel, Fully nonlinear operators with Hamiltonian: Hölder regularity of the gradient, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 41, 17 pp. doi: 10.1007/s00030-016-0392-z.  Google Scholar

[10]

L. BoccardoP. Marcellini and C. Sbordone, $L^\infty$-regularity for variational problems with sharp nonstandard growth conditions, Boll. Un. Mat. Ital. A, 4 (1990), 219-225.  doi: 10.1007/bf01934372.  Google Scholar

[11]

L. BoccardoT. Gallouët and P. Marcellini, Anisotropic equations in $L^1$, Differential Integral Equations, 9 (1996), 209-212.   Google Scholar

[12]

V. BögeleinF. Duzaar and P. Marcellini, Parabolic equations with $p, q$-growth, Journal de Mathématiques Pures et Appliquées, 100 (2013), 535-563.  doi: 10.1016/j.matpur.2013.01.012.  Google Scholar

[13]

V. BögeleinF. Duzaar and P. Marcellini, Parabolic systems with $p, q-$growth: A variational approach, Arch. Ration. Mech. Anal., 210 (2013), 219-267.  doi: 10.1007/s00205-013-0646-4.  Google Scholar

[14]

V. BögeleinF. Duzaar and P. Marcellini, Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations, 256 (2014), 3912-3942.  doi: 10.1016/j.jde.2014.03.005.  Google Scholar

[15]

V. BögeleinF. Duzaar and P. Marcellini, A time dependent variational approach to image restoration, SIAM J. on Imaging Sciences, 8 (2015), 968-1006.  doi: 10.1137/140992771.  Google Scholar

[16]

V. BögeleinF. DuzaarP. Marcellini and C. Scheven, Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., 229 (2018), 503-545.  doi: 10.1007/s00205-018-1221-9.  Google Scholar

[17]

V. BögeleinF. DuzaarP. Marcellini and C. Scheven, A variational approach to doubly nonlinear equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 29 (2018), 739-772.  doi: 10.4171/RLM/832.  Google Scholar

[18]

V. BögeleinF. DuzaarP. Marcellini and S. Signoriello, Nonlocal diffusion equations, J. Math. Anal. Appl., 432 (2015), 398-428.  doi: 10.1016/j.jmaa.2015.06.053.  Google Scholar

[19]

V. BögeleinF. DuzaarP. Marcellini and S. Signoriello, Parabolic equations and the bounded slope condition, Ann. Inst. H. Poincare, Anal. Non Lineaire, 34 (2017), 355-379.  doi: 10.1016/j.anihpc.2015.12.005.  Google Scholar

[20]

B. Botteron and P. Marcellini, A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 197-223.  doi: 10.1016/S0294-1449(16)30272-4.  Google Scholar

[21]

L. Brasco and G. Carlier, On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds, Adv. Calc. Var., 7 (2014), 379-407.  doi: 10.1515/acv-2013-0007.  Google Scholar

[22]

P. Celada and S. Perrotta, Polyconvex energies and cavitation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 295-321.  doi: 10.1007/s00030-012-0184-z.  Google Scholar

[23]

I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Analysis, 175 (1918), 1-27.  doi: 10.1016/j.na.2018.05.003.  Google Scholar

[24]

F. Colasuonno and P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962-5974.  doi: 10.1016/j.na.2011.05.073.  Google Scholar

[25]

M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal., 215 (2015), 443-496.  doi: 10.1007/s00205-014-0785-2.  Google Scholar

[26]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rat. Mech. Anal., 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[27]

G. CupiniF. GiannettiR. Giova and A. Passarelli di Napoli, Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients, Nonlinear Anal., 154 (2017), 7-24.  doi: 10.1016/j.na.2016.02.017.  Google Scholar

[28]

G. CupiniM. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with $p-q$ growth, Nonlinear Anal., 54 (2003), 591-616.  doi: 10.1016/S0362-546X(03)00087-7.  Google Scholar

[29]

G. CupiniP. Marcellini and E. Mascolo, Regularity under sharp anisotropic general growth conditions, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 66-86.  doi: 10.3934/dcdsb.2009.11.67.  Google Scholar

[30]

G. CupiniP. Marcellini and E. Mascolo, Local boundedness of solutions to quasilinear elliptic systems, Manuscripta Math., 137 (2012), 287-315.  doi: 10.1007/s00229-011-0464-7.  Google Scholar

[31]

G. CupiniP. Marcellini and E. Mascolo, Local boundedness of solutions to some anisotropic elliptic systems, Recent Trends in Nonlinear Partial Differential Equations. II. Stationary problems, Contemp. Math., Amer. Math. Soc., Providence, RI, 595 (2013), 169-186.  doi: 10.1090/conm/595/11803.  Google Scholar

[32]

G. CupiniP. Marcellini and E. Mascolo, Existence and regularity for elliptic equations under $p, q$-growth, Adv. Differential Equations, 19 (2014), 693-724.   Google Scholar

[33]

G. CupiniP. Marcellini and E. Mascolo, Local boundedness of minimizers with limit growth conditions, J. Optim. Theory Appl., 166 (2015), 1-22.  doi: 10.1007/s10957-015-0722-z.  Google Scholar

[34]

G. CupiniP. Marcellini and E. Mascolo, Regularity of minimizers under limit growth conditions, Nonlinear Analysis, 153 (2017), 294-310.  doi: 10.1016/j.na.2016.06.002.  Google Scholar

[35]

G. CupiniP. Marcellini and E. Mascolo, Nonuniformly elliptic energy integrals with $p, q$-growth, Nonlinear Analysis, 177 (2018), 312-324.  doi: 10.1016/j.na.2018.03.018.  Google Scholar

[36]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli, Mem. Accad. Sci. Torino, cl. Sci. Fis. Mat. Nat. (3), 3 (1957), 25-43.   Google Scholar

[37]

F. Demengel, Regularity properties of viscosity solutions for fully nonlinear equations on the model of the anisotropic $p$-Laplacian, Asymptot. Anal., 105 (2017), 27-43.  doi: 10.3233/ASY-171433.  Google Scholar

[38]

E. DiBenedetto, $\mathcal{C}^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[39]

E. DiBenedettoU. Gianazza and V. Vespri, Remarks on local boundedness and local Hölder continuity of local weak solutions to anisotropic $p$-Laplacian type equations, J. Elliptic Parabol. Equ., 2 (2016), 157-169.  doi: 10.1007/BF03377399.  Google Scholar

[40]

L. Diening, P. Harjulehto, P. Hästöand M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[41]

G. F. DüzgunP. Marcellini and V. Vespri, Space expansion for a solution of an anisotropic $p$-Laplacian equation by using a parabolic approach, Riv. Math. Univ. Parma (N.S.), 5 (2014), 93-111.   Google Scholar

[42]

G. DüzgunP. Marcellini and V. Vespri, An alternative approach to the Hölder continuity of solutions to some elliptic equations, Nonlinear Anal., 94 (2014), 133-141.  doi: 10.1016/j.na.2013.08.018.  Google Scholar

[43]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura Appl., 195 (2016), 1575-1603.  doi: 10.1007/s10231-015-0529-4.  Google Scholar

[44]

M. EleuteriP. Marcellini and E. Mascolo, Lipschitz continuity for functionals with variable exponents, Rend. Lincei Mat. Appl., 27 (2016), 61-87.  doi: 10.4171/RLM/723.  Google Scholar

[45]

M. Eleuteri, P. Marcellini and E. Mascolo, Regularity for scalar integrals without structure conditions, Advances in Calculus of Variations, (2018). doi: 10.1515/acv-2017-0037.  Google Scholar

[46]

M. EleuteriP. Marcellini and E. Mascolo, Local Lipschitz continuity of minimizers with mild assumptions on the $x$-dependence, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 251-265.  doi: 10.3934/dcdss.2019018.  Google Scholar

[47]

M. Eleuteri and A. Passarelli di Napoli, Higher differentiability for solutions to a class of obstacle problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 115, 29 pp. doi: 10.1007/s00526-018-1387-x.  Google Scholar

[48]

L. EspositoF. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p, q)$ growth, Forum Math., 14 (2002), 245-272.  doi: 10.1515/form.2002.011.  Google Scholar

[49]

L. EspositoF. Leonetti and G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55.  doi: 10.1016/j.jde.2003.11.007.  Google Scholar

[50]

A. EspositoF. Leonetti and P. Vincenzo Petricca, Absence of Lavrentiev gap for non-autonomous functionals with $(p, q)$-growth, Adv. Nonlinear Anal., 8 (2019), 73-78.  doi: 10.1515/anona-2016-0198.  Google Scholar

[51]

M. Focardi and E. Mascolo, Lower semicontinuity of quasi-convex functionals with non-standard growth, J. Convex Anal., 8 (2001), 327-347.   Google Scholar

[52]

I. FonsecaN. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM: Control, Optimisation and Calculus of Variations, 7 (2002), 69-95.  doi: 10.1051/cocv:2002004.  Google Scholar

[53]

R. FortiniD. Mugnai and P. Pucci, Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal., 70 (2009), 2917-2929.  doi: 10.1016/j.na.2008.12.030.  Google Scholar

[54]

G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204-228.  doi: 10.1016/j.jmaa.2009.12.039.  Google Scholar

[55]

N. FuscoP. Marcellini and A. Ornelas, Existence of minimizers for some non convex one-dimensional integrals, Portugaliae Mathematica, 55 (1998), 167-185.   Google Scholar

[56] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.   Google Scholar
[57]

M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248.  doi: 10.1007/BF01158049.  Google Scholar

[58]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. doi: 10.1142/9789812795557.  Google Scholar

[59]

P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, 2236. Springer, Cham, 2019. doi: 10.1007/978-3-030-15100-3.  Google Scholar

[60]

M. C. Hong, Some remarks on the minimizers of variational integrals wtih non standard growth conditions, Boll. Un. Mat. Ital. A, 6 (1992), 91-101.   Google Scholar

[61]

M. A. Krasnosel'skij and J. B. Ruticki$\check{{\rm i}}$, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.  Google Scholar

[62] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.   Google Scholar
[63]

V. Liskevich and I. I. Skrypnik, Hölder continuity of solutions to an anisotropic elliptic equation, Nonlinear Analysis, 71 (2009), 1699-1708.  doi: 10.1016/j.na.2009.01.007.  Google Scholar

[64]

J. J. LiuP. PucciH. T. Wu and Q. H. Zhang, Existence and blow-up rate of large solutions of $p(x)$-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457 (2018), 944-977.  doi: 10.1016/j.jmaa.2017.08.038.  Google Scholar

[65]

P. Marcellini, Quasiconvex quadratic forms in two dimensions, Applied Mathematics and Optimization, 11 (1984), 183-189.  doi: 10.1007/BF01442177.  Google Scholar

[66]

P. Marcellini, Un example de solution discontinue d'un problème variationnel dans le cas scalaire, Preprint 11, Istituto Matematico, "U.Dini", Università di Firenze, 1987. http://web.math.unifi.it/users/marcellini/lavori/reprints/ Google Scholar

[67]

P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity, Partial Differential Equations and the Calculus of Variations, Vol. II, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2 (1989), 767-786.   Google Scholar

[68]

P. Marcellini, Nonconvex integrals of the calculus of variations, Methods of Nonconvex Analysis (Varenna, 1989), Lecture Notes in Math., Springer, Berlin, 1446 (1990), 16-57.  doi: 10.1007/BFb0084930.  Google Scholar

[69]

P. Marcellini, Regularity of minimizers of integrals in the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284.  doi: 10.1007/BF00251503.  Google Scholar

[70]

P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[71]

P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations, 105 (1993), 296-333.  doi: 10.1006/jdeq.1993.1091.  Google Scholar

[72]

P. Marcellini, Regularity for some scalar variational problems under general growth conditions, J. Optim. Theory Appl., 90 (1996), 161-181.  doi: 10.1007/BF02192251.  Google Scholar

[73]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 1-25.   Google Scholar

[74]

P. Marcellini, Some recent developments in the study of Hilbert's 19th and 20th problems, Boll. Un. Mat. Ital. A (7), 11 (1997), 323-352.   Google Scholar

[75]

P. Marcellini, A variational approach to parabolic equations under general and $p, q$-growth conditions, Nonlinear Anal., (2019). doi: 10.1016/j.na.2019.02.010.  Google Scholar

[76]

P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Differential Equations, 221 (2006), 412-443.  doi: 10.1016/j.jde.2004.11.011.  Google Scholar

[77]

M. MihailescuP. Pucci and V. Rǎdulescu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, 345 (2007), 561-566.  doi: 10.1016/j.crma.2007.10.012.  Google Scholar

[78]

M. MihailescuP. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687-698.  doi: 10.1016/j.jmaa.2007.09.015.  Google Scholar

[79]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426.  doi: 10.1007/s10778-006-0110-3.  Google Scholar

[80]

A. Passarelli di Napoli, Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Advances in Calculus of Variations, 7 (2014), 59-89.  doi: 10.1515/acv-2012-0006.  Google Scholar

[81]

S. Piro VernierF. Ragnedda and V. Vespri, Hölder regularity for bounded solutions to a class of anisotropic operators, Manuscripta Math., 158 (2019), 421-439.  doi: 10.1007/s00229-018-1034-z.  Google Scholar

[82]

P. Pucci and Q. H. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.  doi: 10.1016/j.jde.2014.05.023.  Google Scholar

[83]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.  doi: 10.1007/BF02392316.  Google Scholar

[84]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877.  Google Scholar

[85]

V. V. Zhikov, On Lavrentiev phenomenon, Russian J. Math. Phys., 3 (1995), 249-269.   Google Scholar

[86]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.   Google Scholar

[1]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[2]

Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252

[3]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[4]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[5]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[6]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[7]

Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020154

[8]

Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100

[9]

Giovanni Cupini, Paolo Marcellini, Elvira Mascolo. Regularity under sharp anisotropic general growth conditions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 67-86. doi: 10.3934/dcdsb.2009.11.67

[10]

Juntao Sun, Tsung-fang Wu. The effect of nonlocal term on the superlinear elliptic equations in $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3217-3242. doi: 10.3934/cpaa.2019145

[11]

Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $ N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007

[12]

Guangfeng Dong, Changjian Liu, Jiazhong Yang. On the maximal saddle order of $ p:-q $ resonant saddle. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5729-5742. doi: 10.3934/dcds.2019251

[13]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[14]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[15]

Jiao Du, Longjiang Qu, Chao Li, Xin Liao. Constructing 1-resilient rotation symmetric functions over $ {\mathbb F}_{p} $ with $ {q} $ variables through special orthogonal arrays. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020018

[16]

Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014

[17]

Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082

[18]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[19]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[20]

Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527

2018 Impact Factor: 0.545

Article outline

[Back to Top]