-
Previous Article
Combined effects for non-autonomous singular biharmonic problems
- DCDS-S Home
- This Issue
-
Next Article
On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions
A note on a class of 4th order hyperbolic problems with weak and strong damping and superlinear source term
Università di Cagliari, Dipartimento di Matematica e Informatica, Viale Merello 92, 09123 Cagliari, Italy |
In this paper we study a initial-boundary value problem for 4th order hyperbolic equations with weak and strong damping terms and superlinear source term. For blow-up solutions a lower bound of the blow-up time is derived. Then we extend the results to a class of equations where a positive power of gradient term is introduced.
References:
[1] |
R. A. Adams and J. J. F. Fourier, Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
![]() ![]() |
[2] |
L. J. An and A. Peirce,
A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.
doi: 10.1137/S0036139993255327. |
[3] |
G. Autuori, F. Colasuonno and P. Pucci,
Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Variables and Elliptic Equations, 57 (2012), 379-395.
doi: 10.1080/17476933.2011.592584. |
[4] |
G. Autuori and P. Pucci,
Local asymptotic stability for polyharmonic Kirchhoff systems, Applicable Analysis, 90 (2011), 493-514.
doi: 10.1080/00036811.2010.483433. |
[5] |
W. Y. Chen and Y. Zhou,
Global nonexistence of a semilinear Petrovsky equation, Nonlinear Anal., 70 (2009), 3203-3208.
doi: 10.1016/j.na.2008.04.024. |
[6] |
V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-Up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[7] |
G. Li, Y. N. Sun and W. J. Liu,
Global existence, and blow-up of solutions for a strongly damped Petrosky system with nonlinear damping, Applicable Analysis, 91 (2012), 575-586.
doi: 10.1080/00036811.2010.550576. |
[8] |
G. Li, Y. N. Sun and W. J. Liu,
Global existence, uniform decay and blow-up solutions for a system of Petrosky equations, Nonlinear Anal., 74 (2011), 1523-1538.
doi: 10.1016/j.na.2010.10.025. |
[9] |
Y. C. Liu and R. Z. Xu,
Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.
doi: 10.1016/j.jmaa.2006.09.010. |
[10] |
M. Marras and S. Vernier-Piro, Lifespan for solutions to 4-th order nonlinear hyperbolic systems with time dependent coefficients, J. Math. Anal. Appl., 480 (2019), 123387, 14 pp.
doi: 10.1016/j.jmaa.2019.123387. |
[11] |
S. A. Messaoudi,
Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296-308.
doi: 10.1006/jmaa.2001.7697. |
[12] |
L. E. Payne and D. H. Sattinger,
Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[13] |
A. Peyravi,
Lower bounds of blow-up time for a system of semi-linear hyperbolic Petrovsky equations, Acta Math. Sci. Ser. B, 36 (2016), 683-688.
doi: 10.1016/S0252-9602(16)30031-5. |
[14] |
G. A. Philippin,
Blow-up phenomena for a class of 4th order parabolic problems, Proc. Amer. Math. Soc., 143 (2015), 2507-2513.
doi: 10.1090/S0002-9939-2015-12446-X. |
[15] |
G. A. Philippin and S. Vernier-Piro,
Lower bounds for the lifespan of solutions for a class of fourth order wave equations, Applied Mathemathics Letters, 50 (2015), 141-145.
doi: 10.1016/j.aml.2015.06.016. |
[16] |
G. A. Philippin and S. Vernier-Piro,
Behaviour in time of solutions to a class of fourth order evolution equations, J. Math. Anal. Appl., 436 (2016), 718-728.
doi: 10.1016/j.jmaa.2015.11.066. |
[17] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353–372.
doi: 10.1007/BF02418013. |
[18] |
S.-T. Wu, Blowup of solutions for a system of nonlinear wave equations with nonlinear damping, Elec. J. Diff. Equ., 2009 (2009), 11 pp. |
[19] |
S.-T. Wu and L.-Y. Tsai,
On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Tawainese J. Math., 13 (2009), 545-558.
doi: 10.11650/twjm/1500405355. |
[20] |
J. Zhou,
Lower bounds for blow-up time of two nonlinear wave equations, Applied Mathemathics Letter, 45 (2015), 64-68.
doi: 10.1016/j.aml.2015.01.010. |
show all references
To our friend Patrizia on the occasion of her sixty-fifth birthday.
References:
[1] |
R. A. Adams and J. J. F. Fourier, Sobolev Spaces, Second edition. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
![]() ![]() |
[2] |
L. J. An and A. Peirce,
A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.
doi: 10.1137/S0036139993255327. |
[3] |
G. Autuori, F. Colasuonno and P. Pucci,
Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Variables and Elliptic Equations, 57 (2012), 379-395.
doi: 10.1080/17476933.2011.592584. |
[4] |
G. Autuori and P. Pucci,
Local asymptotic stability for polyharmonic Kirchhoff systems, Applicable Analysis, 90 (2011), 493-514.
doi: 10.1080/00036811.2010.483433. |
[5] |
W. Y. Chen and Y. Zhou,
Global nonexistence of a semilinear Petrovsky equation, Nonlinear Anal., 70 (2009), 3203-3208.
doi: 10.1016/j.na.2008.04.024. |
[6] |
V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-Up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrödinger Equations, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[7] |
G. Li, Y. N. Sun and W. J. Liu,
Global existence, and blow-up of solutions for a strongly damped Petrosky system with nonlinear damping, Applicable Analysis, 91 (2012), 575-586.
doi: 10.1080/00036811.2010.550576. |
[8] |
G. Li, Y. N. Sun and W. J. Liu,
Global existence, uniform decay and blow-up solutions for a system of Petrosky equations, Nonlinear Anal., 74 (2011), 1523-1538.
doi: 10.1016/j.na.2010.10.025. |
[9] |
Y. C. Liu and R. Z. Xu,
Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.
doi: 10.1016/j.jmaa.2006.09.010. |
[10] |
M. Marras and S. Vernier-Piro, Lifespan for solutions to 4-th order nonlinear hyperbolic systems with time dependent coefficients, J. Math. Anal. Appl., 480 (2019), 123387, 14 pp.
doi: 10.1016/j.jmaa.2019.123387. |
[11] |
S. A. Messaoudi,
Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl., 265 (2002), 296-308.
doi: 10.1006/jmaa.2001.7697. |
[12] |
L. E. Payne and D. H. Sattinger,
Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[13] |
A. Peyravi,
Lower bounds of blow-up time for a system of semi-linear hyperbolic Petrovsky equations, Acta Math. Sci. Ser. B, 36 (2016), 683-688.
doi: 10.1016/S0252-9602(16)30031-5. |
[14] |
G. A. Philippin,
Blow-up phenomena for a class of 4th order parabolic problems, Proc. Amer. Math. Soc., 143 (2015), 2507-2513.
doi: 10.1090/S0002-9939-2015-12446-X. |
[15] |
G. A. Philippin and S. Vernier-Piro,
Lower bounds for the lifespan of solutions for a class of fourth order wave equations, Applied Mathemathics Letters, 50 (2015), 141-145.
doi: 10.1016/j.aml.2015.06.016. |
[16] |
G. A. Philippin and S. Vernier-Piro,
Behaviour in time of solutions to a class of fourth order evolution equations, J. Math. Anal. Appl., 436 (2016), 718-728.
doi: 10.1016/j.jmaa.2015.11.066. |
[17] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353–372.
doi: 10.1007/BF02418013. |
[18] |
S.-T. Wu, Blowup of solutions for a system of nonlinear wave equations with nonlinear damping, Elec. J. Diff. Equ., 2009 (2009), 11 pp. |
[19] |
S.-T. Wu and L.-Y. Tsai,
On global solutions and blow-up of solutions for a nonlinearly damped Petrovsky system, Tawainese J. Math., 13 (2009), 545-558.
doi: 10.11650/twjm/1500405355. |
[20] |
J. Zhou,
Lower bounds for blow-up time of two nonlinear wave equations, Applied Mathemathics Letter, 45 (2015), 64-68.
doi: 10.1016/j.aml.2015.01.010. |
[1] |
Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627 |
[2] |
Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244 |
[3] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[4] |
Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1221-1232. doi: 10.3934/dcdss.2021093 |
[5] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[6] |
Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403 |
[7] |
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851 |
[8] |
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001 |
[9] |
Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025 |
[10] |
V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191 |
[11] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
[12] |
Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022111 |
[13] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[14] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[15] |
Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135 |
[16] |
Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271 |
[17] |
G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205 |
[18] |
John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84 |
[19] |
Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127 |
[20] |
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]