doi: 10.3934/dcdss.2020158

Combined effects for non-autonomous singular biharmonic problems

a. 

Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

b. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

c. 

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

d. 

Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

* Corresponding author: Vicenţiu D. Rădulescu

To Professor Patrizia Pucci, on the occasion of her 65th birthday. Her work and friendship are a permanent source of inspiration and motivation.

Received  July 2018 Revised  August 2018 Published  November 2019

We study the existence of nontrivial weak solutions for a class of generalized $ p(x) $-biharmonic equations with singular nonlinearity and Navier boundary condition. The proofs combine variational and topological arguments. The approach developed in this paper allows for the treatment of several classes of singular biharmonic problems with variable growth arising in applied sciences, including the capillarity equation and the mean curvature problem.

Citation: Vicenţiu D. Rădulescu, Dušan D. Repovš. Combined effects for non-autonomous singular biharmonic problems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020158
References:
[1]

G. Autuori, F. Colasuonno and P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math., 16 (2014), 1450002, 43 pp. doi: 10.1142/S0219199714500023.  Google Scholar

[2]

G. Autuori and P. Pucci, Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ., 56 (2011), 715-753.  doi: 10.1080/17476931003786691.  Google Scholar

[3]

A. Ayoujil and A. El Amrouss, Continuous spectrum of a fourth-order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differ. Equations, 2011 (2011), 12 pp.  Google Scholar

[4]

P. BaroniM. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, Algebra i Analiz, 27 (2015), 6-50.  doi: 10.1090/spmj/1392.  Google Scholar

[5]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Mathématiques Appliquées pour la Maâtrise, Masson, Paris, 1983.  Google Scholar

[6]

M. Cencelj, V. D. Rădulescu and D. D. Repovš, Double phase problems with variable growth, Nonlinear Anal., 177 (2018), part A, 270–287. doi: 10.1016/j.na.2018.03.016.  Google Scholar

[7]

M. CenceljD. Repovš and Ž. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119 (2015), 37-45.  doi: 10.1016/j.na.2014.07.015.  Google Scholar

[8]

Y. M. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[9]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Archive for Rational Mechanics and Analysis, 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[10]

M. Colombo and G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, Journal of Functional Analysis, 270 (2016), 1416-1478.  doi: 10.1016/j.jfa.2015.06.022.  Google Scholar

[11]

L. Diening, P. Hästö, P. Harjulehto and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Lecture Notes, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[12]

T. C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766.   Google Scholar

[13]

P. HarjulehtoP. HästöÚ. V. Le and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[14]

K. Kefi, V. D. Rădulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68 (2017), Art. 80, 13 pp. doi: 10.1007/s00033-017-0827-3.  Google Scholar

[15]

K. Kefi and K. Saoudi, On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions, Advances in Nonlinear Analysis, 8 (2019), 1171-1183.  doi: 10.1515/anona-2016-0260.  Google Scholar

[16]

I. H. Kim and Y.-H. Kim nd, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.  doi: 10.1007/s00229-014-0718-2.  Google Scholar

[17]

J. J. LiuP. PucciH. T. Wu and Q. H. Zhang, Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457 (2018), 944-977.  doi: 10.1016/j.jmaa.2017.08.038.  Google Scholar

[18]

P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 3 (1986), 391-409.  doi: 10.1016/S0294-1449(16)30379-1.  Google Scholar

[19]

P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[20]

M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625-2641.  doi: 10.1098/rspa.2005.1633.  Google Scholar

[21]

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.  Google Scholar

[22]

W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211.  doi: 10.4064/sm-3-1-200-211.  Google Scholar

[23]

P. Pucci and Q. H. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.  doi: 10.1016/j.jde.2014.05.023.  Google Scholar

[24]

V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Analysis: Theory, Methods and Applications, 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.  Google Scholar

[25]

V. D. Rădulescu and D. D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.  doi: 10.1016/j.na.2011.01.037.  Google Scholar

[26] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.  doi: 10.1201/b18601.  Google Scholar
[27]

V. D. Rădulescu and Q. H. Zhang, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9), 118 (2018), 159–203. doi: 10.1016/j.matpur.2018.06.015.  Google Scholar

[28]

D. D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.), 13 (2015), 645-661.  doi: 10.1142/S0219530514500420.  Google Scholar

[29]

M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[30]

X. Y. Shi, V. D. Rădulescu, D. D. Repovš and Q. H. Zhang, Multiple solutions of double phase variational problems with variable exponent, Advances in Calculus of Variations, (2018), https://doi.org/10.1515/acv-2018-0003. Google Scholar

[31]

J. Simon, Régularité de la solution d'une équation non linéaire dans $ \mathbb R^N$, Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.  Google Scholar

[32]

A. B. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces, Nonlinear Anal., 69 (2008), 3629-3636.  doi: 10.1016/j.na.2007.10.001.  Google Scholar

[33]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877.  Google Scholar

[34]

V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 435-439.   Google Scholar

show all references

References:
[1]

G. Autuori, F. Colasuonno and P. Pucci, On the existence of stationary solutions for higher-order p-Kirchhoff problems, Commun. Contemp. Math., 16 (2014), 1450002, 43 pp. doi: 10.1142/S0219199714500023.  Google Scholar

[2]

G. Autuori and P. Pucci, Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces, Complex Var. Elliptic Equ., 56 (2011), 715-753.  doi: 10.1080/17476931003786691.  Google Scholar

[3]

A. Ayoujil and A. El Amrouss, Continuous spectrum of a fourth-order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differ. Equations, 2011 (2011), 12 pp.  Google Scholar

[4]

P. BaroniM. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, Algebra i Analiz, 27 (2015), 6-50.  doi: 10.1090/spmj/1392.  Google Scholar

[5]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Mathématiques Appliquées pour la Maâtrise, Masson, Paris, 1983.  Google Scholar

[6]

M. Cencelj, V. D. Rădulescu and D. D. Repovš, Double phase problems with variable growth, Nonlinear Anal., 177 (2018), part A, 270–287. doi: 10.1016/j.na.2018.03.016.  Google Scholar

[7]

M. CenceljD. Repovš and Ž. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119 (2015), 37-45.  doi: 10.1016/j.na.2014.07.015.  Google Scholar

[8]

Y. M. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[9]

M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Archive for Rational Mechanics and Analysis, 218 (2015), 219-273.  doi: 10.1007/s00205-015-0859-9.  Google Scholar

[10]

M. Colombo and G. Mingione, Calderón-Zygmund estimates and non-uniformly elliptic operators, Journal of Functional Analysis, 270 (2016), 1416-1478.  doi: 10.1016/j.jfa.2015.06.022.  Google Scholar

[11]

L. Diening, P. Hästö, P. Harjulehto and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Lecture Notes, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[12]

T. C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766.   Google Scholar

[13]

P. HarjulehtoP. HästöÚ. V. Le and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[14]

K. Kefi, V. D. Rădulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68 (2017), Art. 80, 13 pp. doi: 10.1007/s00033-017-0827-3.  Google Scholar

[15]

K. Kefi and K. Saoudi, On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions, Advances in Nonlinear Analysis, 8 (2019), 1171-1183.  doi: 10.1515/anona-2016-0260.  Google Scholar

[16]

I. H. Kim and Y.-H. Kim nd, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.  doi: 10.1007/s00229-014-0718-2.  Google Scholar

[17]

J. J. LiuP. PucciH. T. Wu and Q. H. Zhang, Existence and blow-up rate of large solutions of p(x)-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457 (2018), 944-977.  doi: 10.1016/j.jmaa.2017.08.038.  Google Scholar

[18]

P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 3 (1986), 391-409.  doi: 10.1016/S0294-1449(16)30379-1.  Google Scholar

[19]

P. Marcellini, Regularity and existence of solutions of elliptic equations with (p, q)-growth conditions, J. Differential Equations, 90 (1991), 1-30.  doi: 10.1016/0022-0396(91)90158-6.  Google Scholar

[20]

M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625-2641.  doi: 10.1098/rspa.2005.1633.  Google Scholar

[21]

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.  Google Scholar

[22]

W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math., 3 (1931), 200-211.  doi: 10.4064/sm-3-1-200-211.  Google Scholar

[23]

P. Pucci and Q. H. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.  doi: 10.1016/j.jde.2014.05.023.  Google Scholar

[24]

V. D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Analysis: Theory, Methods and Applications, 121 (2015), 336-369.  doi: 10.1016/j.na.2014.11.007.  Google Scholar

[25]

V. D. Rădulescu and D. D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.  doi: 10.1016/j.na.2011.01.037.  Google Scholar

[26] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.  doi: 10.1201/b18601.  Google Scholar
[27]

V. D. Rădulescu and Q. H. Zhang, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. (9), 118 (2018), 159–203. doi: 10.1016/j.matpur.2018.06.015.  Google Scholar

[28]

D. D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.), 13 (2015), 645-661.  doi: 10.1142/S0219530514500420.  Google Scholar

[29]

M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, 1748. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[30]

X. Y. Shi, V. D. Rădulescu, D. D. Repovš and Q. H. Zhang, Multiple solutions of double phase variational problems with variable exponent, Advances in Calculus of Variations, (2018), https://doi.org/10.1515/acv-2018-0003. Google Scholar

[31]

J. Simon, Régularité de la solution d'une équation non linéaire dans $ \mathbb R^N$, Journées d'Analyse Non Linéaire (Proc. Conf., Besançon, 1977), Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.  Google Scholar

[32]

A. B. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces, Nonlinear Anal., 69 (2008), 3629-3636.  doi: 10.1016/j.na.2007.10.001.  Google Scholar

[33]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877.  Google Scholar

[34]

V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 435-439.   Google Scholar

[1]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[2]

Rafael de la Rosa, María Santos Bruzón. Differential invariants of a generalized variable-coefficient Gardner equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 747-757. doi: 10.3934/dcdss.2018047

[3]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[4]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[5]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[6]

Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109

[7]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[8]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[9]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[10]

Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493

[11]

Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049

[12]

M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1705-1722. doi: 10.3934/cpaa.2010.9.1705

[13]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[14]

Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 245-268. doi: 10.3934/cpaa.2015.14.245

[15]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[16]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[17]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[18]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[19]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[20]

Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (20)
  • HTML views (45)
  • Cited by (0)

Other articles
by authors

[Back to Top]