December  2020, 13(12): 3319-3334. doi: 10.3934/dcdss.2020161

Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients

1. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa

2. 

Institute of Mathematics, Łódź University of Technology, Łódź, Poland

The paper is dedicated to Giséle Ruiz Goldstein on the occasion of her birthday

Received  February 2019 Revised  April 2019 Published  December 2019

Fund Project: The research has been partially supported by the National Science Centre of Poland Grant 2017/25/B/ST1/00051 and the National Research Foundation of South Africa Grant 82770

In this paper we prove the existence of global classical solutions to continuous coagulation–fragmentation equations with unbounded coefficients under the sole assumption that the coagulation rate is dominated by a power of the fragmentation rate, thus improving upon a number of recent results by not requiring any polynomial growth bound for either rate. This is achieved by proving a new result on the analyticity of the fragmentation semigroup and then using its regularizing properties to prove the local and then, under a stronger assumption, the global classical solvability of the coagulation–fragmentation equation considered as a semilinear perturbation of the linear fragmentation equation. Furthermore, we show that weak solutions of the coagulation–fragmentation equation, obtained by the weak compactness method, coincide with the classical local in time solutions provided the latter exist.

Citation: Jacek Banasiak. Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3319-3334. doi: 10.3934/dcdss.2020161
References:
[1]

M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1079), 203-230.  doi: 10.1007/BF01197880.  Google Scholar

[2]

W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.  doi: 10.1007/BF01200341.  Google Scholar

[3]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys., 61 (1990), 203-234.  doi: 10.1007/BF01013961.  Google Scholar

[4]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006.  Google Scholar

[5] J. BanasiakW. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2019.   Google Scholar
[6]

J. Banasiak, L. O. Joel and S. Shindin, The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation, Kinetic and Related Models, 12 (2019), 1069–1092, arXiv: 1809.00046. Google Scholar

[7]

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.  doi: 10.1016/j.jmaa.2012.02.002.  Google Scholar

[8]

J. BanasiakW. Lamb and M. Langer, Strong fragmentation and coagulation with power-law rates, J. Engrg. Math., 82 (2013), 199-215.  doi: 10.1007/s10665-012-9596-3.  Google Scholar

[9]

R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Annalen der Physik, 416 (1935), 719-752.   Google Scholar

[10]

J. Bergh and J. Löfström, Interpolation Spaces: An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[11] J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006.  doi: 10.1017/CBO9780511617768.  Google Scholar
[12]

P. J. Blatz and A. V. Tobolsky, Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, The Journal of Physical Chemistry, 49 (1945), 77-80.  doi: 10.1021/j150440a004.  Google Scholar

[13]

P. B. Dubovskiǐ and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.  doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[15]

M. EscobedoS. Mischler and B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.  doi: 10.1007/s00220-002-0680-9.  Google Scholar

[16]

M. EscobedoP. LaurençotS. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.  doi: 10.1016/S0022-0396(03)00134-7.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[18]

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.  doi: 10.1017/S0308210502000598.  Google Scholar

[19]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[20]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.  doi: 10.1103/PhysRevLett.58.892.  Google Scholar

[21]

Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.  doi: 10.1090/S0002-9947-1957-0087880-6.  Google Scholar

[22]

H. Müller, Zur allgemeinen theorie der raschen koagulation, Fortschrittsberichte über Kolloide und Polymere, 27 (1928), 223–250. Google Scholar

[23]

M. v. Smoluchowski, Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17 (1916), 557–585. Google Scholar

[24]

M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, 92 (1917), 129–168. doi: 10.1515/zpch-1918-9209.  Google Scholar

[25]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.  doi: 10.1002/mma.1670110505.  Google Scholar

[26]

I. W. Stewart, Density conservation for a coagulation equation, Z. Angew. Math. Phys., 42 (1991), 746-756.  doi: 10.1007/BF00944770.  Google Scholar

[27]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Engineering Science, 53 (1998), 1725-1729.  doi: 10.1016/S0009-2509(98)00016-5.  Google Scholar

[28]

J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.  doi: 10.1007/BF01351602.  Google Scholar

show all references

References:
[1]

M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1079), 203-230.  doi: 10.1007/BF01197880.  Google Scholar

[2]

W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.  doi: 10.1007/BF01200341.  Google Scholar

[3]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys., 61 (1990), 203-234.  doi: 10.1007/BF01013961.  Google Scholar

[4]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006.  Google Scholar

[5] J. BanasiakW. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2019.   Google Scholar
[6]

J. Banasiak, L. O. Joel and S. Shindin, The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation, Kinetic and Related Models, 12 (2019), 1069–1092, arXiv: 1809.00046. Google Scholar

[7]

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.  doi: 10.1016/j.jmaa.2012.02.002.  Google Scholar

[8]

J. BanasiakW. Lamb and M. Langer, Strong fragmentation and coagulation with power-law rates, J. Engrg. Math., 82 (2013), 199-215.  doi: 10.1007/s10665-012-9596-3.  Google Scholar

[9]

R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Annalen der Physik, 416 (1935), 719-752.   Google Scholar

[10]

J. Bergh and J. Löfström, Interpolation Spaces: An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[11] J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006.  doi: 10.1017/CBO9780511617768.  Google Scholar
[12]

P. J. Blatz and A. V. Tobolsky, Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, The Journal of Physical Chemistry, 49 (1945), 77-80.  doi: 10.1021/j150440a004.  Google Scholar

[13]

P. B. Dubovskiǐ and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.  doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[15]

M. EscobedoS. Mischler and B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.  doi: 10.1007/s00220-002-0680-9.  Google Scholar

[16]

M. EscobedoP. LaurençotS. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.  doi: 10.1016/S0022-0396(03)00134-7.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[18]

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.  doi: 10.1017/S0308210502000598.  Google Scholar

[19]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[20]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.  doi: 10.1103/PhysRevLett.58.892.  Google Scholar

[21]

Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.  doi: 10.1090/S0002-9947-1957-0087880-6.  Google Scholar

[22]

H. Müller, Zur allgemeinen theorie der raschen koagulation, Fortschrittsberichte über Kolloide und Polymere, 27 (1928), 223–250. Google Scholar

[23]

M. v. Smoluchowski, Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17 (1916), 557–585. Google Scholar

[24]

M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, 92 (1917), 129–168. doi: 10.1515/zpch-1918-9209.  Google Scholar

[25]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.  doi: 10.1002/mma.1670110505.  Google Scholar

[26]

I. W. Stewart, Density conservation for a coagulation equation, Z. Angew. Math. Phys., 42 (1991), 746-756.  doi: 10.1007/BF00944770.  Google Scholar

[27]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Engineering Science, 53 (1998), 1725-1729.  doi: 10.1016/S0009-2509(98)00016-5.  Google Scholar

[28]

J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.  doi: 10.1007/BF01351602.  Google Scholar

[1]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[7]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[10]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[11]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[12]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[13]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[14]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[15]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[18]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[19]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[20]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (91)
  • HTML views (370)
  • Cited by (0)

Other articles
by authors

[Back to Top]