December  2020, 13(12): 3319-3334. doi: 10.3934/dcdss.2020161

Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients

1. 

Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa

2. 

Institute of Mathematics, Łódź University of Technology, Łódź, Poland

The paper is dedicated to Giséle Ruiz Goldstein on the occasion of her birthday

Received  February 2019 Revised  April 2019 Published  December 2019

Fund Project: The research has been partially supported by the National Science Centre of Poland Grant 2017/25/B/ST1/00051 and the National Research Foundation of South Africa Grant 82770

In this paper we prove the existence of global classical solutions to continuous coagulation–fragmentation equations with unbounded coefficients under the sole assumption that the coagulation rate is dominated by a power of the fragmentation rate, thus improving upon a number of recent results by not requiring any polynomial growth bound for either rate. This is achieved by proving a new result on the analyticity of the fragmentation semigroup and then using its regularizing properties to prove the local and then, under a stronger assumption, the global classical solvability of the coagulation–fragmentation equation considered as a semilinear perturbation of the linear fragmentation equation. Furthermore, we show that weak solutions of the coagulation–fragmentation equation, obtained by the weak compactness method, coincide with the classical local in time solutions provided the latter exist.

Citation: Jacek Banasiak. Global solutions of continuous coagulation–fragmentation equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3319-3334. doi: 10.3934/dcdss.2020161
References:
[1]

M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1079), 203-230.  doi: 10.1007/BF01197880.  Google Scholar

[2]

W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.  doi: 10.1007/BF01200341.  Google Scholar

[3]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys., 61 (1990), 203-234.  doi: 10.1007/BF01013961.  Google Scholar

[4]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006.  Google Scholar

[5] J. BanasiakW. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2019.   Google Scholar
[6]

J. Banasiak, L. O. Joel and S. Shindin, The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation, Kinetic and Related Models, 12 (2019), 1069–1092, arXiv: 1809.00046. Google Scholar

[7]

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.  doi: 10.1016/j.jmaa.2012.02.002.  Google Scholar

[8]

J. BanasiakW. Lamb and M. Langer, Strong fragmentation and coagulation with power-law rates, J. Engrg. Math., 82 (2013), 199-215.  doi: 10.1007/s10665-012-9596-3.  Google Scholar

[9]

R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Annalen der Physik, 416 (1935), 719-752.   Google Scholar

[10]

J. Bergh and J. Löfström, Interpolation Spaces: An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[11] J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006.  doi: 10.1017/CBO9780511617768.  Google Scholar
[12]

P. J. Blatz and A. V. Tobolsky, Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, The Journal of Physical Chemistry, 49 (1945), 77-80.  doi: 10.1021/j150440a004.  Google Scholar

[13]

P. B. Dubovskiǐ and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.  doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[15]

M. EscobedoS. Mischler and B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.  doi: 10.1007/s00220-002-0680-9.  Google Scholar

[16]

M. EscobedoP. LaurençotS. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.  doi: 10.1016/S0022-0396(03)00134-7.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[18]

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.  doi: 10.1017/S0308210502000598.  Google Scholar

[19]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[20]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.  doi: 10.1103/PhysRevLett.58.892.  Google Scholar

[21]

Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.  doi: 10.1090/S0002-9947-1957-0087880-6.  Google Scholar

[22]

H. Müller, Zur allgemeinen theorie der raschen koagulation, Fortschrittsberichte über Kolloide und Polymere, 27 (1928), 223–250. Google Scholar

[23]

M. v. Smoluchowski, Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17 (1916), 557–585. Google Scholar

[24]

M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, 92 (1917), 129–168. doi: 10.1515/zpch-1918-9209.  Google Scholar

[25]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.  doi: 10.1002/mma.1670110505.  Google Scholar

[26]

I. W. Stewart, Density conservation for a coagulation equation, Z. Angew. Math. Phys., 42 (1991), 746-756.  doi: 10.1007/BF00944770.  Google Scholar

[27]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Engineering Science, 53 (1998), 1725-1729.  doi: 10.1016/S0009-2509(98)00016-5.  Google Scholar

[28]

J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.  doi: 10.1007/BF01351602.  Google Scholar

show all references

References:
[1]

M. Aizenman and T. A. Bak, Convergence to equilibrium in a system of reacting polymers, Comm. Math. Phys., 65 (1079), 203-230.  doi: 10.1007/BF01197880.  Google Scholar

[2]

W. Arendt and A. Rhandi, Perturbation of positive semigroups, Arch. Math. (Basel), 56 (1991), 107-119.  doi: 10.1007/BF01200341.  Google Scholar

[3]

J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys., 61 (1990), 203-234.  doi: 10.1007/BF01013961.  Google Scholar

[4]

J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2006.  Google Scholar

[5] J. BanasiakW. Lamb and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I & II, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2019.   Google Scholar
[6]

J. Banasiak, L. O. Joel and S. Shindin, The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation, Kinetic and Related Models, 12 (2019), 1069–1092, arXiv: 1809.00046. Google Scholar

[7]

J. Banasiak and W. Lamb, Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates, J. Math. Anal. Appl., 391 (2012), 312-322.  doi: 10.1016/j.jmaa.2012.02.002.  Google Scholar

[8]

J. BanasiakW. Lamb and M. Langer, Strong fragmentation and coagulation with power-law rates, J. Engrg. Math., 82 (2013), 199-215.  doi: 10.1007/s10665-012-9596-3.  Google Scholar

[9]

R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen, Annalen der Physik, 416 (1935), 719-752.   Google Scholar

[10]

J. Bergh and J. Löfström, Interpolation Spaces: An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[11] J. Bertoin, Random Fragmentation and Coagulation Processes, Cambridge Studies in Advanced Mathematics, 102. Cambridge University Press, Cambridge, 2006.  doi: 10.1017/CBO9780511617768.  Google Scholar
[12]

P. J. Blatz and A. V. Tobolsky, Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena, The Journal of Physical Chemistry, 49 (1945), 77-80.  doi: 10.1021/j150440a004.  Google Scholar

[13]

P. B. Dubovskiǐ and I. W. Stewart, Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19 (1996), 571-591.  doi: 10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q.  Google Scholar

[14]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[15]

M. EscobedoS. Mischler and B. Perthame, Gelation in coagulation and fragmentation models, Comm. Math. Phys., 231 (2002), 157-188.  doi: 10.1007/s00220-002-0680-9.  Google Scholar

[16]

M. EscobedoP. LaurençotS. Mischler and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.  doi: 10.1016/S0022-0396(03)00134-7.  Google Scholar

[17]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[18]

P. Laurençot and S. Mischler, From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.  doi: 10.1017/S0308210502000598.  Google Scholar

[19]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[20]

E. D. McGrady and R. M. Ziff, "Shattering" transition in fragmentation, Phys. Rev. Lett., 58 (1987), 892-895.  doi: 10.1103/PhysRevLett.58.892.  Google Scholar

[21]

Z. A. Melzak, A scalar transport equation, Trans. Amer. Math. Soc., 85 (1957), 547-560.  doi: 10.1090/S0002-9947-1957-0087880-6.  Google Scholar

[22]

H. Müller, Zur allgemeinen theorie der raschen koagulation, Fortschrittsberichte über Kolloide und Polymere, 27 (1928), 223–250. Google Scholar

[23]

M. v. Smoluchowski, Drei vortrage über diffusion, brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17 (1916), 557–585. Google Scholar

[24]

M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift für Physikalische Chemie, 92 (1917), 129–168. doi: 10.1515/zpch-1918-9209.  Google Scholar

[25]

I. W. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.  doi: 10.1002/mma.1670110505.  Google Scholar

[26]

I. W. Stewart, Density conservation for a coagulation equation, Z. Angew. Math. Phys., 42 (1991), 746-756.  doi: 10.1007/BF00944770.  Google Scholar

[27]

R. D. Vigil and R. M. Ziff, On the scaling theory of two-component aggregation, Chemical Engineering Science, 53 (1998), 1725-1729.  doi: 10.1016/S0009-2509(98)00016-5.  Google Scholar

[28]

J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann., 229 (1977), 163-171.  doi: 10.1007/BF01351602.  Google Scholar

[1]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[2]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[3]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[4]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[5]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[6]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[7]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[8]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[9]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[10]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[11]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[12]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002

[13]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[14]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[15]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[16]

Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[19]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[20]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (105)
  • HTML views (372)
  • Cited by (0)

Other articles
by authors

[Back to Top]