• Previous Article
    Numerical continuation and delay equations: A novel approach for complex models of structured populations
  • DCDS-S Home
  • This Issue
  • Next Article
    Pseudospectral discretization of delay differential equations in sun-star formulation: Results and conjectures
September  2020, 13(9): 2603-2617. doi: 10.3934/dcdss.2020164

Functionally-fitted block $ \theta $-methods for ordinary differential equations

1. 

College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China

2. 

Department of Mathematics, Shanghai Normal University, Scientific Computing Key Laboratory of Shanghai Universities, 100 Guilin Road, Shanghai 200234, China

* Corresponding author: Hongjiong Tian

Dedicated to the memory of Professor Christopher T. H. Baker

Received  December 2018 Revised  May 2019 Published  December 2019

Fund Project: The work of the authors is supported in part by E-Institutes of Shanghai Municipal Education Commission under Grant No. E03004, the National Natural Science Foundation of China under Grant Nos. 11671266 and 11871343, and the Natural Science Foundation of Shanghai under Grant No. 16ZR1424900

We propose a new family of functionally-fitted block $ \theta $-methods for numerically solving ordinary differential equations which integrates a chosen set of linearly independent functions exactly. The advantage of such variable coefficient methods is that the basis functions can be chosen to exploit specific properties of the problem that may be known in advance. The basic theory for the proposed methods is established. First, we derive a sufficient condition to ensure the existence of the functionally-fitted block $ \theta $-methods, and discuss the independence on integration time for a set of separable basis functions. We then obtain some basic characteristics of the methods by Taylor series expansions, and show that the order of accuracy of $ r $-dimensional functionally-fitted block $ \theta $-method is at least $ r $ for ordinary differential equations. Numerical experiments are conducted to illustrate the efficiency of the functionally-fitted block $ \theta $-methods.

Citation: Jingwen Wu, Jintao Hu, Hongjiong Tian. Functionally-fitted block $ \theta $-methods for ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2603-2617. doi: 10.3934/dcdss.2020164
References:
[1]

G. D. AndriaG. D. Byrne and D. R. Hill, Natrual spline block implicit methods, BIT, 13 (1973), 131-144.  doi: 10.1007/bf01933485.  Google Scholar

[2]

J. E. Bond and J. R. Cash, A block method for the numerical integration of stiff systems of ordinary differential equations, BIT, 19 (1979), 429-447.  doi: 10.1007/BF01931259.  Google Scholar

[3]

L. Brugnano and D. Trigiante, Block implicit methods for ODEs, Recent Trends in Numerical Analysis, Nova Science Publishers, New York, 3 (2001), 81-105.   Google Scholar

[4]

L. Brugnano and D. Trigiante, Solving ODEs By Multistep Initial and Boundary Value Methods, Gordon & Breach: Amsterdam, 1998. Google Scholar

[5]

L. BrugnanoF. Iavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line methods), JNAIAM, 5 (2010), 17-37.   Google Scholar

[6]

L. BrugnanoF. Iavernaro and D. Trigiante, A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218 (2012), 8475-8485.  doi: 10.1016/j.amc.2012.01.074.  Google Scholar

[7]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Second edition. John Wiley & Sons, Ltd., Chichester, 2008. doi: 10.1002/9780470753767.  Google Scholar

[8]

J. R. Cash, A note on the exponential fitting of blended, extended linear multistep methods, BIT, 21 (1981), 450-453.  doi: 10.1007/BF01932841.  Google Scholar

[9]

P. Chartier, $L$-stable parallel one-block methods for ordinary differential equations, SIAM J. Numer. Anal., 31 (1994), 552-571.  doi: 10.1137/0731030.  Google Scholar

[10]

M. T. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comput., 8 (1987), 342-353.  doi: 10.1137/0908039.  Google Scholar

[11]

J. P. Coleman, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.  doi: 10.1093/imanum/16.2.179.  Google Scholar

[12]

R. D'AmbrosioE. Esposito and B. Paternoster, Parameter estimation in exponentially fitted hybrid methods for second order differential problems, J. Math. Chem., 50 (2012), 155-168.  doi: 10.1007/s10910-011-9903-7.  Google Scholar

[13]

W. H. EnrightT. E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of O.D.E.'s, BIT, 15 (1975), 10-48.   Google Scholar

[14]

W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3 (1961), 381-397.  doi: 10.1007/BF01386037.  Google Scholar

[15]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Second edition, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.  Google Scholar

[16]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Second edition, Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-05221-7.  Google Scholar

[17]

N. S. Hoang and R. B. Sidje, On the stability of functionally fitted Runge-Kutta methods, BIT, 48 (2008), 61-77.  doi: 10.1007/s10543-007-0158-4.  Google Scholar

[18]

N. S. HoangR. B. Sidje and N. H. Cong, On functionally-fitted Runge-Kutta methods, BIT, 46 (2006), 861-874.  doi: 10.1007/s10543-006-0092-x.  Google Scholar

[19]

H. S. HoangR. B. Sidje and N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187-207.  doi: 10.1016/j.cam.2005.12.006.  Google Scholar

[20]

F. Iavernaro and F. Mazzia, Convergence and stability of multistep methods solving nonlinear initial value problems, SIAM J. Sci. Comput., 18 (1997), 270-285.  doi: 10.1137/S1064827595287122.  Google Scholar

[21]

L. Gr. IxaruM. RizeaH. De Meyer and G. Vanden Berghe, Weights of the exponential fitting multistep algorithms for ODEs. Advanced numerical methods for mathematical modelling, J. Comput. Appl. Math., 132 (2001), 83-93.  doi: 10.1016/S0377-0427(00)00599-9.  Google Scholar

[22]

L. Gr. IxaruG. Vanden Berghe and H. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs, J. Comput. Appl. Math., 140 (2002), 423-434.  doi: 10.1016/S0377-0427(01)00474-5.  Google Scholar

[23]

L. Gr. IxaruG. Vanden Berghe and H. De Meyer, Exponentially fitted variable two-step BDF algorithms for first order ODEs, Comput. Phys. Commun., 150 (2003), 116-128.  doi: 10.1016/S0010-4655(02)00676-8.  Google Scholar

[24]

S. N. JatorS. Swindell and R. French, Trigonometrically fitted block Numerov type method for $y'' = f(x, y, y')$, Numer. Algor., 62 (2013), 13-26.  doi: 10.1007/s11075-012-9562-1.  Google Scholar

[25]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Inc., Chichester, 1991.  Google Scholar

[26]

L. H. Lu, The stability of the block $\theta$-methods, IMA J. Numer. Anal., 13 (1993), 101-114.  doi: 10.1093/imanum/13.1.101.  Google Scholar

[27]

S. MehrkanoonZ. A. Majid and M. Suleiman, A variable step implicit block multistep method for solving first-order ODEs, J. Comput. Appl. Math., 233 (2010), 2387-2394.  doi: 10.1016/j.cam.2009.10.023.  Google Scholar

[28]

H. S. NguyenR. B. Sidje and N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187-207.  doi: 10.1016/j.cam.2005.12.006.  Google Scholar

[29]

F. F. Ngwane and S. N. Jator, Block hybrid method using trigonometric basis for initial value problems with oscillating solutions, Numer. Algor., 63 (2013), 713-725.  doi: 10.1007/s11075-012-9649-8.  Google Scholar

[30]

K. Ozawa, A four-stage implicit Runge-Kutta-Nyström method with variable coefficients for solving periodic initial value problems, Japan J. Indust. Appl. Math., 16 (1999), 25-46.  doi: 10.1007/BF03167523.  Google Scholar

[31]

K. Ozawa, A functional fitting Runge-Kutta Method with variable coefficients, Japan J. Indust. Appl. Math., 18 (2001), 107-130.  doi: 10.1007/BF03167357.  Google Scholar

[32]

K. Ozawa, A functional fitting Runge-Kutta-Nyström method with variable coefficients, Japan J. Indust. Appl. Math., 19 (2002), 55-85.  doi: 10.1007/BF03167448.  Google Scholar

[33]

B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.  doi: 10.1016/S0168-9274(98)00056-7.  Google Scholar

[34]

A. D. Raptis and T. E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problems, BIT, 31 (1991), 160-168.  doi: 10.1007/BF01952791.  Google Scholar

[35]

L. F. Shampine and H. A. Watts, Block implicit one-step methods, Math. Comput., 23 (1969), 731-740.  doi: 10.1090/S0025-5718-1969-0264854-5.  Google Scholar

[36]

L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.  Google Scholar

[37]

T. E. Simos, Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation, IMA J. Numer. Anal., 11 (1991), 347-356.  doi: 10.1093/imanum/11.3.347.  Google Scholar

[38]

B. P. SommeijerW. Couzy and P. J. van der Houwen, $A$-stable parallel block methods for ordinary and integro-differential equations, Appl. Numer. Math., 9 (1992), 267-281.  doi: 10.1016/0168-9274(92)90021-5.  Google Scholar

[39]

R. M. ThomasT. E. Simos and G. V. Mitsou, A family of Numerov type exponential fitted predictor-corrector methods for the numerical integration of the radial Schrodinger equation, J. Comput. Appl. Math., 67 (1996), 255-270.  doi: 10.1016/0377-0427(94)00126-X.  Google Scholar

[40]

H. J. TianK. T. Shan and J. X. Kuang, Continuous block $\theta$-methods for ordinary and delay differential equations, SIAM J. Sci. Comput., 31 (2009/10), 4266-4280.  doi: 10.1137/080730779.  Google Scholar

[41]

H. J. TianQ. H. Yu and C. L. Jin, Continuous block implicit hybrid one-step methods for ordinary and delay differential equations, Appl. Numer. Math., 61 (2011), 1289-1300.  doi: 10.1016/j.apnum.2011.09.001.  Google Scholar

[42]

J. VanthournoutG. Vanden Berghe and H. De Meyer, Families of backward differentiation methods based on a new type of mixed interpolation, Comput. Math. Appl., 20 (1990), 19-30.  doi: 10.1016/0898-1221(90)90215-6.  Google Scholar

[43]

H. Van de Vyver, Frequency evaluation for exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 184 (2005), 442-463.  doi: 10.1016/j.cam.2005.01.020.  Google Scholar

[44]

D. S. Watanabe, Block implicit one-step methods, Math. Comput., 32 (1978), 405-414.  doi: 10.1090/S0025-5718-1978-0494959-0.  Google Scholar

[45]

H. A. Watts and L. F. Shampine, $A$-stable block implicit one-step methods, BIT, 12 (1972), 252-266.  doi: 10.1007/bf01932819.  Google Scholar

[46]

J. W. Wu and H. J. Tian, Functionally-fitted block methods for ordinary differential equations, J. Comput. Appl. Math., 271 (2014), 356-368.  doi: 10.1016/j.cam.2014.04.013.  Google Scholar

[47]

J. W. Wu and H. J. Tian, Functionally-fitted block methods for second order ordinary differential equations, Comput. Phys. Communc., 197 (2015), 96-108.  doi: 10.1016/j.cpc.2015.08.010.  Google Scholar

[48]

L. Xie and H. J. Tian, Continuous parallel block methods and their applications, Appl. Math. Comp., 241 (2014), 356-370.  doi: 10.1016/j.amc.2014.05.026.  Google Scholar

[49]

Y. XuJ. J. Zhao and Z. N. Sui, Exponential Runge-Kutta methods for delay differential equations, Math. Comput. Simulation, 80 (2010), 2350-2361.  doi: 10.1016/j.matcom.2010.05.016.  Google Scholar

[50]

B. Zhou, $A$-stable and $L$-stable block implicit one-step methods, J. Comput. Math., 3 (1985), 328-341.   Google Scholar

show all references

References:
[1]

G. D. AndriaG. D. Byrne and D. R. Hill, Natrual spline block implicit methods, BIT, 13 (1973), 131-144.  doi: 10.1007/bf01933485.  Google Scholar

[2]

J. E. Bond and J. R. Cash, A block method for the numerical integration of stiff systems of ordinary differential equations, BIT, 19 (1979), 429-447.  doi: 10.1007/BF01931259.  Google Scholar

[3]

L. Brugnano and D. Trigiante, Block implicit methods for ODEs, Recent Trends in Numerical Analysis, Nova Science Publishers, New York, 3 (2001), 81-105.   Google Scholar

[4]

L. Brugnano and D. Trigiante, Solving ODEs By Multistep Initial and Boundary Value Methods, Gordon & Breach: Amsterdam, 1998. Google Scholar

[5]

L. BrugnanoF. Iavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line methods), JNAIAM, 5 (2010), 17-37.   Google Scholar

[6]

L. BrugnanoF. Iavernaro and D. Trigiante, A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218 (2012), 8475-8485.  doi: 10.1016/j.amc.2012.01.074.  Google Scholar

[7]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Second edition. John Wiley & Sons, Ltd., Chichester, 2008. doi: 10.1002/9780470753767.  Google Scholar

[8]

J. R. Cash, A note on the exponential fitting of blended, extended linear multistep methods, BIT, 21 (1981), 450-453.  doi: 10.1007/BF01932841.  Google Scholar

[9]

P. Chartier, $L$-stable parallel one-block methods for ordinary differential equations, SIAM J. Numer. Anal., 31 (1994), 552-571.  doi: 10.1137/0731030.  Google Scholar

[10]

M. T. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comput., 8 (1987), 342-353.  doi: 10.1137/0908039.  Google Scholar

[11]

J. P. Coleman, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.  doi: 10.1093/imanum/16.2.179.  Google Scholar

[12]

R. D'AmbrosioE. Esposito and B. Paternoster, Parameter estimation in exponentially fitted hybrid methods for second order differential problems, J. Math. Chem., 50 (2012), 155-168.  doi: 10.1007/s10910-011-9903-7.  Google Scholar

[13]

W. H. EnrightT. E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of O.D.E.'s, BIT, 15 (1975), 10-48.   Google Scholar

[14]

W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3 (1961), 381-397.  doi: 10.1007/BF01386037.  Google Scholar

[15]

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Second edition, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.  Google Scholar

[16]

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Second edition, Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-05221-7.  Google Scholar

[17]

N. S. Hoang and R. B. Sidje, On the stability of functionally fitted Runge-Kutta methods, BIT, 48 (2008), 61-77.  doi: 10.1007/s10543-007-0158-4.  Google Scholar

[18]

N. S. HoangR. B. Sidje and N. H. Cong, On functionally-fitted Runge-Kutta methods, BIT, 46 (2006), 861-874.  doi: 10.1007/s10543-006-0092-x.  Google Scholar

[19]

H. S. HoangR. B. Sidje and N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187-207.  doi: 10.1016/j.cam.2005.12.006.  Google Scholar

[20]

F. Iavernaro and F. Mazzia, Convergence and stability of multistep methods solving nonlinear initial value problems, SIAM J. Sci. Comput., 18 (1997), 270-285.  doi: 10.1137/S1064827595287122.  Google Scholar

[21]

L. Gr. IxaruM. RizeaH. De Meyer and G. Vanden Berghe, Weights of the exponential fitting multistep algorithms for ODEs. Advanced numerical methods for mathematical modelling, J. Comput. Appl. Math., 132 (2001), 83-93.  doi: 10.1016/S0377-0427(00)00599-9.  Google Scholar

[22]

L. Gr. IxaruG. Vanden Berghe and H. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs, J. Comput. Appl. Math., 140 (2002), 423-434.  doi: 10.1016/S0377-0427(01)00474-5.  Google Scholar

[23]

L. Gr. IxaruG. Vanden Berghe and H. De Meyer, Exponentially fitted variable two-step BDF algorithms for first order ODEs, Comput. Phys. Commun., 150 (2003), 116-128.  doi: 10.1016/S0010-4655(02)00676-8.  Google Scholar

[24]

S. N. JatorS. Swindell and R. French, Trigonometrically fitted block Numerov type method for $y'' = f(x, y, y')$, Numer. Algor., 62 (2013), 13-26.  doi: 10.1007/s11075-012-9562-1.  Google Scholar

[25]

J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Inc., Chichester, 1991.  Google Scholar

[26]

L. H. Lu, The stability of the block $\theta$-methods, IMA J. Numer. Anal., 13 (1993), 101-114.  doi: 10.1093/imanum/13.1.101.  Google Scholar

[27]

S. MehrkanoonZ. A. Majid and M. Suleiman, A variable step implicit block multistep method for solving first-order ODEs, J. Comput. Appl. Math., 233 (2010), 2387-2394.  doi: 10.1016/j.cam.2009.10.023.  Google Scholar

[28]

H. S. NguyenR. B. Sidje and N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187-207.  doi: 10.1016/j.cam.2005.12.006.  Google Scholar

[29]

F. F. Ngwane and S. N. Jator, Block hybrid method using trigonometric basis for initial value problems with oscillating solutions, Numer. Algor., 63 (2013), 713-725.  doi: 10.1007/s11075-012-9649-8.  Google Scholar

[30]

K. Ozawa, A four-stage implicit Runge-Kutta-Nyström method with variable coefficients for solving periodic initial value problems, Japan J. Indust. Appl. Math., 16 (1999), 25-46.  doi: 10.1007/BF03167523.  Google Scholar

[31]

K. Ozawa, A functional fitting Runge-Kutta Method with variable coefficients, Japan J. Indust. Appl. Math., 18 (2001), 107-130.  doi: 10.1007/BF03167357.  Google Scholar

[32]

K. Ozawa, A functional fitting Runge-Kutta-Nyström method with variable coefficients, Japan J. Indust. Appl. Math., 19 (2002), 55-85.  doi: 10.1007/BF03167448.  Google Scholar

[33]

B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.  doi: 10.1016/S0168-9274(98)00056-7.  Google Scholar

[34]

A. D. Raptis and T. E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problems, BIT, 31 (1991), 160-168.  doi: 10.1007/BF01952791.  Google Scholar

[35]

L. F. Shampine and H. A. Watts, Block implicit one-step methods, Math. Comput., 23 (1969), 731-740.  doi: 10.1090/S0025-5718-1969-0264854-5.  Google Scholar

[36]

L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.  Google Scholar

[37]

T. E. Simos, Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation, IMA J. Numer. Anal., 11 (1991), 347-356.  doi: 10.1093/imanum/11.3.347.  Google Scholar

[38]

B. P. SommeijerW. Couzy and P. J. van der Houwen, $A$-stable parallel block methods for ordinary and integro-differential equations, Appl. Numer. Math., 9 (1992), 267-281.  doi: 10.1016/0168-9274(92)90021-5.  Google Scholar

[39]

R. M. ThomasT. E. Simos and G. V. Mitsou, A family of Numerov type exponential fitted predictor-corrector methods for the numerical integration of the radial Schrodinger equation, J. Comput. Appl. Math., 67 (1996), 255-270.  doi: 10.1016/0377-0427(94)00126-X.  Google Scholar

[40]

H. J. TianK. T. Shan and J. X. Kuang, Continuous block $\theta$-methods for ordinary and delay differential equations, SIAM J. Sci. Comput., 31 (2009/10), 4266-4280.  doi: 10.1137/080730779.  Google Scholar

[41]

H. J. TianQ. H. Yu and C. L. Jin, Continuous block implicit hybrid one-step methods for ordinary and delay differential equations, Appl. Numer. Math., 61 (2011), 1289-1300.  doi: 10.1016/j.apnum.2011.09.001.  Google Scholar

[42]

J. VanthournoutG. Vanden Berghe and H. De Meyer, Families of backward differentiation methods based on a new type of mixed interpolation, Comput. Math. Appl., 20 (1990), 19-30.  doi: 10.1016/0898-1221(90)90215-6.  Google Scholar

[43]

H. Van de Vyver, Frequency evaluation for exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 184 (2005), 442-463.  doi: 10.1016/j.cam.2005.01.020.  Google Scholar

[44]

D. S. Watanabe, Block implicit one-step methods, Math. Comput., 32 (1978), 405-414.  doi: 10.1090/S0025-5718-1978-0494959-0.  Google Scholar

[45]

H. A. Watts and L. F. Shampine, $A$-stable block implicit one-step methods, BIT, 12 (1972), 252-266.  doi: 10.1007/bf01932819.  Google Scholar

[46]

J. W. Wu and H. J. Tian, Functionally-fitted block methods for ordinary differential equations, J. Comput. Appl. Math., 271 (2014), 356-368.  doi: 10.1016/j.cam.2014.04.013.  Google Scholar

[47]

J. W. Wu and H. J. Tian, Functionally-fitted block methods for second order ordinary differential equations, Comput. Phys. Communc., 197 (2015), 96-108.  doi: 10.1016/j.cpc.2015.08.010.  Google Scholar

[48]

L. Xie and H. J. Tian, Continuous parallel block methods and their applications, Appl. Math. Comp., 241 (2014), 356-370.  doi: 10.1016/j.amc.2014.05.026.  Google Scholar

[49]

Y. XuJ. J. Zhao and Z. N. Sui, Exponential Runge-Kutta methods for delay differential equations, Math. Comput. Simulation, 80 (2010), 2350-2361.  doi: 10.1016/j.matcom.2010.05.016.  Google Scholar

[50]

B. Zhou, $A$-stable and $L$-stable block implicit one-step methods, J. Comput. Math., 3 (1985), 328-341.   Google Scholar

Figure 1.  Global errors $ \log_{2}(E) $ of FFBT1, FFBT2, FFBT3 and BT with various $ \varepsilon $
Figure 2.  Global errors $ \log_{10}E $ (left) and Execution times (right) of FFBT and FFB
Table 1.  Maximum absolute errors of FFBT(Ⅰ)-FFBT(Ⅲ), BT(Ⅰ)-BT(Ⅲ)
$ h $ FFBT(Ⅰ) FFBT(Ⅱ) FFBT(Ⅲ) BT(Ⅰ) BT(Ⅱ) BT(Ⅲ)
0.4 3.66e-19 4.04e-13 2.07e-01 1.00e-04 2.51e-05 3.16e-01
0.2 6.30e-19 2.87e-18 3.20e-03 2.51e-05 5.01e-06 1.58e-06
0.1 2.74e-18 1.69e-18 2.41e-11 5.01e-06 1.26e-06 3.98e-07
0.05 1.11e-17 9.41e-18 2.91e-18 1.26e-06 3.16e-07 1.00e-07
$ h $ FFBT(Ⅰ) FFBT(Ⅱ) FFBT(Ⅲ) BT(Ⅰ) BT(Ⅱ) BT(Ⅲ)
0.4 3.66e-19 4.04e-13 2.07e-01 1.00e-04 2.51e-05 3.16e-01
0.2 6.30e-19 2.87e-18 3.20e-03 2.51e-05 5.01e-06 1.58e-06
0.1 2.74e-18 1.69e-18 2.41e-11 5.01e-06 1.26e-06 3.98e-07
0.05 1.11e-17 9.41e-18 2.91e-18 1.26e-06 3.16e-07 1.00e-07
Table 2.  Maximum absolute errors of FFBT(A)-FFBT(B), BT(A)-BT(B).
$ h $ FFBT(A) FFBT(B) BT(A) BT(B)
0.4 2.93e-04 1.39e-04 5.92e-02 1.41e-04
0.2 1.12e-04 6.58e-05 6.35e-02 6.60e-05
0.1 5.72e-05 4.46e-05 6.57e-02 4.47e-05
0.05 2.86e-05 1.11e-05 6.68e-02 1.11e-05
$ h $ FFBT(A) FFBT(B) BT(A) BT(B)
0.4 2.93e-04 1.39e-04 5.92e-02 1.41e-04
0.2 1.12e-04 6.58e-05 6.35e-02 6.60e-05
0.1 5.72e-05 4.46e-05 6.57e-02 4.47e-05
0.05 2.86e-05 1.11e-05 6.68e-02 1.11e-05
[1]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[2]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[3]

Yang Wang, Yi-fu Feng. $ \theta $ scheme with two dimensional wavelet-like incremental unknowns for a class of porous medium diffusion-type equations. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 461-481. doi: 10.3934/naco.2019027

[4]

Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial & Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[5]

Lianjun Zhang, Lingchen Kong, Yan Li, Shenglong Zhou. A smoothing iterative method for quantile regression with nonconvex $ \ell_p $ penalty. Journal of Industrial & Management Optimization, 2017, 13 (1) : 93-112. doi: 10.3934/jimo.2016006

[6]

Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002

[7]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[8]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020021

[9]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020079

[10]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[11]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[12]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[13]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[14]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[15]

Zalman Balanov, Yakov Krasnov. On good deformations of $ A_m $-singularities. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1851-1866. doi: 10.3934/dcdss.2019122

[16]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019129

[17]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020128

[18]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[19]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020328

[20]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1987-1998. doi: 10.3934/jimo.2019039

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (55)
  • HTML views (242)
  • Cited by (0)

Other articles
by authors

[Back to Top]