[1]
|
G. D. Andria, G. D. Byrne and D. R. Hill, Natrual spline block implicit methods, BIT, 13 (1973), 131-144.
doi: 10.1007/bf01933485.
|
[2]
|
J. E. Bond and J. R. Cash, A block method for the numerical integration of stiff systems of ordinary differential equations, BIT, 19 (1979), 429-447.
doi: 10.1007/BF01931259.
|
[3]
|
L. Brugnano and D. Trigiante, Block implicit methods for ODEs, Recent Trends in Numerical Analysis, Nova Science Publishers, New York, 3 (2001), 81-105.
|
[4]
|
L. Brugnano and D. Trigiante, Solving ODEs By Multistep Initial and Boundary Value Methods, Gordon & Breach: Amsterdam, 1998.
|
[5]
|
L. Brugnano, F. Iavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line methods), JNAIAM, 5 (2010), 17-37.
|
[6]
|
L. Brugnano, F. Iavernaro and D. Trigiante, A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218 (2012), 8475-8485.
doi: 10.1016/j.amc.2012.01.074.
|
[7]
|
J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Second edition. John Wiley & Sons, Ltd., Chichester, 2008.
doi: 10.1002/9780470753767.
|
[8]
|
J. R. Cash, A note on the exponential fitting of blended, extended linear multistep methods, BIT, 21 (1981), 450-453.
doi: 10.1007/BF01932841.
|
[9]
|
P. Chartier, $L$-stable parallel one-block methods for ordinary differential equations, SIAM J. Numer. Anal., 31 (1994), 552-571.
doi: 10.1137/0731030.
|
[10]
|
M. T. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comput., 8 (1987), 342-353.
doi: 10.1137/0908039.
|
[11]
|
J. P. Coleman, P-stability and exponential-fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179-199.
doi: 10.1093/imanum/16.2.179.
|
[12]
|
R. D'Ambrosio, E. Esposito and B. Paternoster, Parameter estimation in exponentially fitted hybrid methods for second order differential problems, J. Math. Chem., 50 (2012), 155-168.
doi: 10.1007/s10910-011-9903-7.
|
[13]
|
W. H. Enright, T. E. Hull and B. Lindberg, Comparing numerical methods for stiff systems of O.D.E.'s, BIT, 15 (1975), 10-48.
|
[14]
|
W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3 (1961), 381-397.
doi: 10.1007/BF01386037.
|
[15]
|
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Second edition, Springer Series in Computational Mathematics, 8. Springer-Verlag, Berlin, 1993.
|
[16]
|
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Second edition, Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-05221-7.
|
[17]
|
N. S. Hoang and R. B. Sidje, On the stability of functionally fitted Runge-Kutta methods, BIT, 48 (2008), 61-77.
doi: 10.1007/s10543-007-0158-4.
|
[18]
|
N. S. Hoang, R. B. Sidje and N. H. Cong, On functionally-fitted Runge-Kutta methods, BIT, 46 (2006), 861-874.
doi: 10.1007/s10543-006-0092-x.
|
[19]
|
H. S. Hoang, R. B. Sidje and N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187-207.
doi: 10.1016/j.cam.2005.12.006.
|
[20]
|
F. Iavernaro and F. Mazzia, Convergence and stability of multistep methods solving nonlinear initial value problems, SIAM J. Sci. Comput., 18 (1997), 270-285.
doi: 10.1137/S1064827595287122.
|
[21]
|
L. Gr. Ixaru, M. Rizea, H. De Meyer and G. Vanden Berghe, Weights of the exponential fitting multistep algorithms for ODEs. Advanced numerical methods for mathematical modelling, J. Comput. Appl. Math., 132 (2001), 83-93.
doi: 10.1016/S0377-0427(00)00599-9.
|
[22]
|
L. Gr. Ixaru, G. Vanden Berghe and H. De Meyer, Frequency evaluation in exponential fitting multistep algorithms for ODEs, J. Comput. Appl. Math., 140 (2002), 423-434.
doi: 10.1016/S0377-0427(01)00474-5.
|
[23]
|
L. Gr. Ixaru, G. Vanden Berghe and H. De Meyer, Exponentially fitted variable two-step BDF algorithms for first order ODEs, Comput. Phys. Commun., 150 (2003), 116-128.
doi: 10.1016/S0010-4655(02)00676-8.
|
[24]
|
S. N. Jator, S. Swindell and R. French, Trigonometrically fitted block Numerov type method for $y'' = f(x, y, y')$, Numer. Algor., 62 (2013), 13-26.
doi: 10.1007/s11075-012-9562-1.
|
[25]
|
J. D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem, John Wiley & Sons, Inc., Chichester, 1991.
|
[26]
|
L. H. Lu, The stability of the block $\theta$-methods, IMA J. Numer. Anal., 13 (1993), 101-114.
doi: 10.1093/imanum/13.1.101.
|
[27]
|
S. Mehrkanoon, Z. A. Majid and M. Suleiman, A variable step implicit block multistep method for solving first-order ODEs, J. Comput. Appl. Math., 233 (2010), 2387-2394.
doi: 10.1016/j.cam.2009.10.023.
|
[28]
|
H. S. Nguyen, R. B. Sidje and N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187-207.
doi: 10.1016/j.cam.2005.12.006.
|
[29]
|
F. F. Ngwane and S. N. Jator, Block hybrid method using trigonometric basis for initial value problems with oscillating solutions, Numer. Algor., 63 (2013), 713-725.
doi: 10.1007/s11075-012-9649-8.
|
[30]
|
K. Ozawa, A four-stage implicit Runge-Kutta-Nyström method with variable coefficients for solving periodic initial value problems, Japan J. Indust. Appl. Math., 16 (1999), 25-46.
doi: 10.1007/BF03167523.
|
[31]
|
K. Ozawa, A functional fitting Runge-Kutta Method with variable coefficients, Japan J. Indust. Appl. Math., 18 (2001), 107-130.
doi: 10.1007/BF03167357.
|
[32]
|
K. Ozawa, A functional fitting Runge-Kutta-Nyström method with variable coefficients, Japan J. Indust. Appl. Math., 19 (2002), 55-85.
doi: 10.1007/BF03167448.
|
[33]
|
B. Paternoster, Runge-Kutta(-Nyström) methods for ODEs with periodic solutions based on trigonometric polynomials, Appl. Numer. Math., 28 (1998), 401-412.
doi: 10.1016/S0168-9274(98)00056-7.
|
[34]
|
A. D. Raptis and T. E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problems, BIT, 31 (1991), 160-168.
doi: 10.1007/BF01952791.
|
[35]
|
L. F. Shampine and H. A. Watts, Block implicit one-step methods, Math. Comput., 23 (1969), 731-740.
doi: 10.1090/S0025-5718-1969-0264854-5.
|
[36]
|
L. F. Shampine, Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
|
[37]
|
T. E. Simos, Some new four-step exponential-fitting methods for the numerical solution of the radial Schrödinger equation, IMA J. Numer. Anal., 11 (1991), 347-356.
doi: 10.1093/imanum/11.3.347.
|
[38]
|
B. P. Sommeijer, W. Couzy and P. J. van der Houwen, $A$-stable parallel block methods for ordinary and integro-differential equations, Appl. Numer. Math., 9 (1992), 267-281.
doi: 10.1016/0168-9274(92)90021-5.
|
[39]
|
R. M. Thomas, T. E. Simos and G. V. Mitsou, A family of Numerov type exponential fitted predictor-corrector methods for the numerical integration of the radial Schrodinger equation, J. Comput. Appl. Math., 67 (1996), 255-270.
doi: 10.1016/0377-0427(94)00126-X.
|
[40]
|
H. J. Tian, K. T. Shan and J. X. Kuang, Continuous block $\theta$-methods for ordinary and delay differential equations, SIAM J. Sci. Comput., 31 (2009/10), 4266-4280.
doi: 10.1137/080730779.
|
[41]
|
H. J. Tian, Q. H. Yu and C. L. Jin, Continuous block implicit hybrid one-step methods for ordinary and delay differential equations, Appl. Numer. Math., 61 (2011), 1289-1300.
doi: 10.1016/j.apnum.2011.09.001.
|
[42]
|
J. Vanthournout, G. Vanden Berghe and H. De Meyer, Families of backward differentiation methods based on a new type of mixed interpolation, Comput. Math. Appl., 20 (1990), 19-30.
doi: 10.1016/0898-1221(90)90215-6.
|
[43]
|
H. Van de Vyver, Frequency evaluation for exponentially fitted Runge-Kutta methods, J. Comput. Appl. Math., 184 (2005), 442-463.
doi: 10.1016/j.cam.2005.01.020.
|
[44]
|
D. S. Watanabe, Block implicit one-step methods, Math. Comput., 32 (1978), 405-414.
doi: 10.1090/S0025-5718-1978-0494959-0.
|
[45]
|
H. A. Watts and L. F. Shampine, $A$-stable block implicit one-step methods, BIT, 12 (1972), 252-266.
doi: 10.1007/bf01932819.
|
[46]
|
J. W. Wu and H. J. Tian, Functionally-fitted block methods for ordinary differential equations, J. Comput. Appl. Math., 271 (2014), 356-368.
doi: 10.1016/j.cam.2014.04.013.
|
[47]
|
J. W. Wu and H. J. Tian, Functionally-fitted block methods for second order ordinary differential equations, Comput. Phys. Communc., 197 (2015), 96-108.
doi: 10.1016/j.cpc.2015.08.010.
|
[48]
|
L. Xie and H. J. Tian, Continuous parallel block methods and their applications, Appl. Math. Comp., 241 (2014), 356-370.
doi: 10.1016/j.amc.2014.05.026.
|
[49]
|
Y. Xu, J. J. Zhao and Z. N. Sui, Exponential Runge-Kutta methods for delay differential equations, Math. Comput. Simulation, 80 (2010), 2350-2361.
doi: 10.1016/j.matcom.2010.05.016.
|
[50]
|
B. Zhou, $A$-stable and $L$-stable block implicit one-step methods, J. Comput. Math., 3 (1985), 328-341.
|