[1]
|
AUTO, URL http://indy.cs.concordia.ca/auto/.
|
[2]
|
MatCont, URL https://sourceforge.net/projects/matcont/.
|
[3]
|
E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, Classics in Applied Mathematics, 45. SIAM, Philadelphia, 2003.
doi: 10.1137/1.9780898719154.
|
[4]
|
A. Andò and D. Breda, Collocation techniques for structured populations modeled by delay equations, SEPA SIMAI series, Springer.
|
[5]
|
D. Breda, O. Diekmann, W. de Graaf, A. Pugliese and R. Vermiglio, On the formulation of epidemic models (an appraisal of Kermack and McKendrick), J. Biol. Dyn., 6 (2012), 103-117.
doi: 10.1080/17513758.2012.716454.
|
[6]
|
D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel and R. Vermiglio, Pseudospectral discretization of nonlinear delay equations: New prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Sys., 15 (2016), 1-23.
doi: 10.1137/15M1040931.
|
[7]
|
D. Breda, P. Getto, J. Sánchez Sanz and R. Vermiglio, Computing the eigenvalues of realistic Daphnia models by pseudospectral methods, SIAM J. Sci. Comput., 37 (2015), A2607–A2629.
doi: 10.1137/15M1016710.
|
[8]
|
C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19 (1965), 577-593.
doi: 10.2307/2003941.
|
[9]
|
H. Dankowicz and F. Schilder, Recipes for Continuation, Computational Science & Engineering, 11. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
doi: 10.1137/1.9781611972573.
|
[10]
|
A. M. de Roos, PSPManalysis, URL https://cran.r-project.org/package=PSPManalysis.
|
[11]
|
A. M. de Roos, A gentle introduction to models of physiologically structured populations, in Structured-Population Models in Marine, Terrestrial and Freshwater Systems, Chapman and Hall, New York, (1997), 119–204.
|
[12]
|
A. M. de Roos, O. Diekmann, P. Getto and M. A. Kirkilionis, Numerical equilibrium analysis for structured consumer resource models, B. Math. Biol., 72 (2010), 259-297.
doi: 10.1007/s11538-009-9445-3.
|
[13]
|
A. M. de Roos, J. A. J. Metz, E. Evers and A. Leipoldt, A size-dependent predator prey interaction: Who pursues whom?, J. Math. Biol., 28 (1990), 609-643.
doi: 10.1007/BF00160229.
|
[14]
|
P. Deuflhard, B. Fiedler and P. Kunkel, Efficient numerical pathfollowing beyond critical points, SIAM J. Numer. Anal., 24 (1987), 912-927.
doi: 10.1137/0724059.
|
[15]
|
A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MatCont: A MATLAB package for numerical bifurcation analysis of ODEs, ACM T. Math. Software, 29 (2003), 141-164.
doi: 10.1145/779359.779362.
|
[16]
|
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, H. G. E. Meijer and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147-175.
doi: 10.1080/13873950701742754.
|
[17]
|
O. Diekmann, P. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra functional equations in the light of suns and stars, SIAM J. Math. Anal., 39 (2007/08), 1023-1069.
doi: 10.1137/060659211.
|
[18]
|
O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka and A. M. de Roos, Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example, J. Math. Biol., 61 (2010), 277-318.
doi: 10.1007/s00285-009-0299-y.
|
[19]
|
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional, Complex and Nonlinear Analysis, Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2.
|
[20]
|
E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), 265-284.
|
[21]
|
E. J. Doedel, Lecture notes on numerical analysis of nonlinear equations, Numerical Continuation Methods for Dynamical Systems, Understanding Complex Systems, Dordrecht, (2007), 1–49.
doi: 10.1007/978-1-4020-6356-5_1.
|
[22]
|
J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6 (1980), 19-26.
doi: 10.1016/0771-050X(80)90013-3.
|
[23]
|
P. Getto, M. Gyllenberg, Y. Nakata and F. Scarabel, Stability analysis of a state-dependent delay differential equation for cell maturation: Analytical and numerical methods, J. Math. Biol., 79 (2019), 281-328.
doi: 10.1007/s00285-019-01357-0.
|
[24]
|
W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719543.
|
[25]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[26]
|
H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-0188-8.
|
[27]
|
E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for Python, (2001), URL http://www.scipy.org/.
|
[28]
|
Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993.
|
[29]
|
L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput., 4 (1983), 137-148.
doi: 10.1137/0904010.
|
[30]
|
M. J. D. Powell, A hybrid method for nonlinear equations, Numerical Methods for Nonlinear Algebraic Equations, Gordon and Breach, London, (1970), 87–114.
|
[31]
|
W. C. Rheinboldt and J. V. Burkardt, Algorithm 596: A program for a locally parameterized continuation process, ACM Trans. Math. Softw., 9 (1983), 236-241.
|
[32]
|
J. Sánchez Sanz and P. Getto, Numerical bifurcation analysis of physiologically structured populations: Consumer-resource, cannibalistic and trophic models, B. Math. Biol., 78 (2016), 1546-1584.
doi: 10.1007/s11538-016-0194-9.
|
[33]
|
H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8.
|
[34]
|
L. N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719598.
|
[35]
|
L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.
|
[36]
|
L. T. Watson, S. C. Billups and A. P. Morgan, Algorithm 652: Homepack: A suite of codes for globally convergent homotopy algorithms, ACM Trans. Math. Softw., 13 (1987), 281-310.
doi: 10.1145/29380.214343.
|