[1]
|
D. Angeli, J. E. Ferrell Jr. and E. D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 1822-1827.
|
[2]
|
G. Bocharov, J. Argilaguet and A. Meyerhans, Understanding experimental LCMV infection of mice: The role of mathematical models, J. Immunol. Res., 2015 (2015), 1-10.
|
[3]
|
G. Bocharov, V. Volpert, B. Ludewig and A. Meyerhans, Mathematical Immunology of Virus Infections, Springer, Cham, 2018.
doi: 10.1007/978-3-319-72317-4.
|
[4]
|
G. A. Bocharov, Modelling the dynamics of LCMV infection in mice: Conventional and exhaustive CTL responses, J. Theor. Biol., 192 (1998), 283-308.
|
[5]
|
G. A. Bocharov, Yu. M. Nechepurenko, M. Yu. Khristichenko and D. S. Grebennikov, Optimal perturbations of systems with delayed argument for control of dynamics of infectious diseases based on multicomponent actions, Sovrem. Mat. Fundam. Napravl., 63 (2017), 392-417.
|
[6]
|
G. A. Bocharov, Yu. M. Nechepurenko, M. Yu. Khristichenko and D. S. Grebennikov, Maximum response perturbation-based control of virus infection model with time-delays, Russian J. Num. Anal. Math. Model., 32 (2017), 275-291.
doi: 10.1515/rnam-2017-0027.
|
[7]
|
G. A. Bocharov, Yu. M. Nechepurenko, M. Yu. Khristichenko and D. S. Grebennikov, Optimal disturbances of bistable time-delay systems modeling virus infections, Doklady Mathrmatics, 98 (2018), 313-316.
|
[8]
|
G. Bocharov, A. Kim, A. Krasovskii, V. Chereshnev, V. Glushenkova and A. Ivanov, An extremal shift method for control of HIV infection dynamics, Russian J. Numer. Anal. Math. Modeling., 30 (2015), 11-25.
doi: 10.1515/rnam-2015-0002.
|
[9]
|
G. A. Bocharov and G. I. Marchuk, Applied problems of mathematical modeling in immunology, Comput. Math. Math. Phys., 40 (2000), 1830-1844.
|
[10]
|
A. V. Boǐko and Yu. M. Nechepurenko, A technique for the numerical analysis of the riblet effect on temporal stability of plane flows, Computational Mathematics and Mathematical Physics, 50 (2010), 1055-1070.
doi: 10.1134/S0965542510060114.
|
[11]
|
D. Breda, S. Maset and R. Vermiglio, TRACE-DDE: A tool for robust analysis and characteristic equations for delay differential equations, Topics in Time Delay Systems: Analysis, Algorithms and Control. Lecture Notes in Control and Information Sciences, Springer Berlin Heidelberg, Berlin, Heidelberg, (2009), 145–155.
|
[12]
|
S. M. Ciupe, C. J. Miller and J. E. Forde, A bistable switch in virus dynamics can explain the differences in disease outcome following SIV infections in rhesus macaques, Front. Microbiol., 9 (2018), 1216.
|
[13]
|
A. Ciurea, P. Klenerman, L. Hunziker, E. Horvath, B. Odermatt, A. F. Ochsenbein, H. Hengartner and R. M. Zinkernagel, Persistence of lymphocytic choriomeningitis virus at very low levels in immune mice, Proc. Natl. Acad. Sci. U.S.A, 96 (1999), 11964-11969.
|
[14]
|
C. Effenberger, Robust successive computation of eigenpairs for nonlinear eigenvalue problems, SIAM J. Matrix Anal., 34 (2013), 1231-1256.
doi: 10.1137/120885644.
|
[15]
|
K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28 (2002), 1-21.
doi: 10.1145/513001.513002.
|
[16]
|
J. E. Ferrell, Bistability, bifurcations, and Waddington's epigenetic landscape, Curr. Biol., 22 (2012), 458-466.
|
[17]
|
G. E. Forsythe, M. A. Malcolm and C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Englewood Cliffs, 1977.
|
[18]
|
G. H. Golub and C. F. Van Loan, Matrix Computations, Second edition, Johns Hopkins Series in the Mathematical Sciences, 3. Johns Hopkins University Press, Baltimore, MD, 1989.
|
[19]
|
E. Hairer and G. Wanner, Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, Second edition. Springer Series in Computational Mathematics, 14. Springer-Verlag, Berlin, 1996.
doi: 10.1007/978-3-642-05221-7.
|
[20]
|
H. Hilton, Plane Algebraic Curves, Oxford University Press, London, 1920.
|
[21]
|
D. Kahaner, C. Moler and S. Nash, Numerical Methods and Software, Prentice-Hall, Englewood Cliffs, 1977.
|
[22]
|
G. I. Marchuk, Mathematical Models in Immunology, Optimization Software Inc. Publications Division, New York, 1983.
|
[23]
|
G. I. Marchuk, Mathematical Modelling of Immune Response in Infectious Diseases, Mathematics and its Applications, 395. Kluwer Academic Publishers Group, Dordrecht, 1997.
doi: 10.1007/978-94-015-8798-3.
|
[24]
|
D. Moskophidis, F. Lechner, H. Pircher and R. M. Zinkernagel, Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells, Nature, 362 (1993), 758-761.
doi: 10.1038/362758a0.
|
[25]
|
Yu. M. Nechepurenko and M. Yu. Khristichenko, Development and analysis of algorithms for computing optimal disturbances for delay systems, Keldysh Institute Preprints, 120 (2018), 1-26.
|
[26]
|
D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, Underst. Complex Syst., Springer, Dordrecht, (2007), 359–399.
doi: 10.1007/978-1-4020-6356-5_12.
|
[27]
|
J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey and D. Roose, DDE-BIFTOOL Manual: Bifurcation analysis of delay differential equations, arXiv: 1406.7144.
|