doi: 10.3934/dcdss.2020169

A study of a generalized first extended (3+1)-dimensional Jimbo-Miwa equation

1. 

International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, South Africa

2. 

Department of Mathematics, College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

* Corresponding author: Chaudry Masood Khalique

Received  January 2019 Published  December 2019

This paper aims to study a generalized first extended (3+1)- dimensional Jimbo-Miwa equation. Symmetry reductions on this equation are performed several times and it is reduced to a nonlinear fourth-order ordinary differential equation. The general solution of this ordinary differential equation is found in terms of the incomplete elliptic integral function. Also exact solutions are constructed using the $ ({G'}/{G})- $expansion method. Thereafter the conservation laws of the underlying equation are computed by invoking the conservation theorem due to Ibragimov. The conservation laws obtained contain an energy conservation law and three momentum conservation laws.

Citation: Chaudry Masood Khalique, Letlhogonolo Daddy Moleleki. A study of a generalized first extended (3+1)-dimensional Jimbo-Miwa equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020169
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1966  Google Scholar

[3]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 81. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-4307-4.  Google Scholar

[4]

M. S. Bruzón and T. M. Garrido, Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.  doi: 10.3934/dcdss.2018038.  Google Scholar

[5]

B. T. Cao, Solutions of Jimbo-Miwa equation and Konopelchenko-Dudrovsky equations, Acta Appl. Math., 112 (2010), 181-203.  doi: 10.1007/s10440-009-9559-5.  Google Scholar

[6]

M. T. Darvishi and M. Najafi, Some complexiton type solutions of the $(3+1)$-dimensional Jimbo-Miwa equation, Int. J. Comput. Math. Sci., 6 (2012), 25-27.   Google Scholar

[7]

A. FatimaF. M. Mahomed and C. M. Khalique, Conditional symmetries of nonlinear third-order ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 655-666.  doi: 10.3934/dcdss.2018040.  Google Scholar

[8]

C. A. Gomez, A. H. Salas and B. Acevedo Frias, Exact solutions to KdV6 equation by using a new approach of the projective Riccati equation method, Math. Prob. Eng., 2010 (2010), 797084, 10 pp. doi: 10.1155/2010/797084.  Google Scholar

[9]

R. Hirota, Exact solution of the KdV equation for multiple collisions of solutions, Phys. Rev. Lett., 27 (1971), 1192-1194.   Google Scholar

[10]

N. H. Ibragimov, R. L. Anderson and et al, CRC Handbook of Lie Group Analysis of Differential Equatios, Vol. 3. New Trends in Theoretical Developments and Computational Methods, CRC Press, Boca Raton, FL, 1996.  Google Scholar

[11]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice, 4. John Wiley & Sons, Ltd., Chichester, 1999.  Google Scholar

[12]

N. H. Ibragimov, Modern group analysis, Nonlinear Dynam. Springer, Dordrecht, 28 (2002), 103-230.   Google Scholar

[13]

N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311-328.  doi: 10.1016/j.jmaa.2006.10.078.  Google Scholar

[14]

M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19 (1983), 943-1001.  doi: 10.2977/prims/1195182017.  Google Scholar

[15]

M. T. Kajani and F. T. Kajani, Homotopy analysis method for solving nonlinear system of equations, 13 (2011), 2471–2473. Google Scholar

[16]

N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fract., 24 (2005), 1217-1231.  doi: 10.1016/j.chaos.2004.09.109.  Google Scholar

[17]

N. A. Kudryashov, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342 (2005), 99-106.  doi: 10.1016/j.physleta.2005.05.025.  Google Scholar

[18]

N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2248-2253.  doi: 10.1016/j.cnsns.2011.10.016.  Google Scholar

[19]

N. A. Kudryashov, Analitical Theory of Nonlinear Differential Equations, Institute of Computer Investigations, Moskow-Igevsk, 2004. Google Scholar

[20]

N. A. Kudryashov, On ``new travelling wave solutions" of the KdV and the KdV-Burgers equations, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 1891-1900.  doi: 10.1016/j.cnsns.2008.09.020.  Google Scholar

[21]

J. Liu and Y. Zhang, Construction of lump soliton and mixed lump stripe solutions of $(3+1)$-dimensional soliton equation, Results in Physics, 10 (2018), 94-98.   Google Scholar

[22]

S. K. LiuZ. T. Fu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions on nonlinear wave equations, Phys. Lett. A., 289 (2001), 69-74.  doi: 10.1016/S0375-9601(01)00580-1.  Google Scholar

[23]

W.-X. Ma and J.-M. Lee, A transformed rational function method and exact solutions to the $(3+1)$-dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42 (2009), 1356-1363.  doi: 10.1016/j.chaos.2009.03.043.  Google Scholar

[24]

F. Mahomed, Recent trends in symmetry analysis of differential equations, Not. S. Afr. Math. Soc., 33 (2002), 11-40.  doi: 10.1198/106186002317375721.  Google Scholar

[25]

W. Malfiet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650-654.  doi: 10.1119/1.17120.  Google Scholar

[26]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993.  Google Scholar

[27]

L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, Inc., New York-London, 1982.  Google Scholar

[28]

M. Saifur Rahman and A. S. M. Z. Hasan, Modified harmonic balance method for the solution of nonlinear jerk equations, Results in Physics, 8 (2018), 893-897.  doi: 10.1016/j.rinp.2018.01.030.  Google Scholar

[29]

I. Simbanefayi and C. M. Khalique, Travelling wave solutions and conservation laws for the Korteweg-de Vries-Bejamin-Bona-Mahony equation, Results in Physics, 8 (2018), 57-63.   Google Scholar

[30]

H.-Q. Sun and A. H. Chen, Lump and limp-kink solutions of the $(3+1)$-dimensional Jimbo-Miwa and extended Jimbo-Miwa equations, Appl. Math. Lett., 68 (2017), 55-61.  doi: 10.1016/j.aml.2016.12.008.  Google Scholar

[31]

C.-Y. Wang, The analytic solutions of Schrödinger equation with Cubic-Quintic nonlinearities, Results in Physics, 10 (2018), 150-154.  doi: 10.1016/j.rinp.2018.05.017.  Google Scholar

[32]

M. L. WangX. Z. Li and J. L. Zhang, The $(G'/G)-$expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A., 372 (2008), 417-423.  doi: 10.1016/j.physleta.2007.07.051.  Google Scholar

[33]

A.-M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. and Comput., 188 (2007), 1467-1475.  doi: 10.1016/j.amc.2006.11.013.  Google Scholar

[34]

A.-M. Wazwaz, Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Appl. Math. Comput., 203 (2008), 592-597.  doi: 10.1016/j.amc.2008.05.004.  Google Scholar

[35]

A.-M. Wazwaz, Multiple-soliton solutions for the extended $(3+1)$-dimensional Jimbo-Miwa equation, Appl. Math. Lett., 64 (2017), 21-26.  doi: 10.1016/j.aml.2016.08.005.  Google Scholar

[36]

G. Q. Xu, The soliton solutions, dromions of the Kadomtsev-Petviashvili and Jimbo-Miwa equations in $(3+1)$-dimensionals, Chaos Solitons Fractals, 30 (2006), 71-76.  doi: 10.1016/j.chaos.2005.08.089.  Google Scholar

[37]

L. J. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order odes and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[38]

Y. B. ZhouM. L. Wang and Y. M. Wang, Periodic wave solutions to coupled KdV equations with variable coefficients, Phys. Lett. A, 308 (2003), 31-36.  doi: 10.1016/S0375-9601(02)01775-9.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.  Google Scholar

[2]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1966  Google Scholar

[3]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 81. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-4307-4.  Google Scholar

[4]

M. S. Bruzón and T. M. Garrido, Symmetries and conservation laws of a KdV6 equation, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 631-641.  doi: 10.3934/dcdss.2018038.  Google Scholar

[5]

B. T. Cao, Solutions of Jimbo-Miwa equation and Konopelchenko-Dudrovsky equations, Acta Appl. Math., 112 (2010), 181-203.  doi: 10.1007/s10440-009-9559-5.  Google Scholar

[6]

M. T. Darvishi and M. Najafi, Some complexiton type solutions of the $(3+1)$-dimensional Jimbo-Miwa equation, Int. J. Comput. Math. Sci., 6 (2012), 25-27.   Google Scholar

[7]

A. FatimaF. M. Mahomed and C. M. Khalique, Conditional symmetries of nonlinear third-order ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 655-666.  doi: 10.3934/dcdss.2018040.  Google Scholar

[8]

C. A. Gomez, A. H. Salas and B. Acevedo Frias, Exact solutions to KdV6 equation by using a new approach of the projective Riccati equation method, Math. Prob. Eng., 2010 (2010), 797084, 10 pp. doi: 10.1155/2010/797084.  Google Scholar

[9]

R. Hirota, Exact solution of the KdV equation for multiple collisions of solutions, Phys. Rev. Lett., 27 (1971), 1192-1194.   Google Scholar

[10]

N. H. Ibragimov, R. L. Anderson and et al, CRC Handbook of Lie Group Analysis of Differential Equatios, Vol. 3. New Trends in Theoretical Developments and Computational Methods, CRC Press, Boca Raton, FL, 1996.  Google Scholar

[11]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice, 4. John Wiley & Sons, Ltd., Chichester, 1999.  Google Scholar

[12]

N. H. Ibragimov, Modern group analysis, Nonlinear Dynam. Springer, Dordrecht, 28 (2002), 103-230.   Google Scholar

[13]

N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311-328.  doi: 10.1016/j.jmaa.2006.10.078.  Google Scholar

[14]

M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 19 (1983), 943-1001.  doi: 10.2977/prims/1195182017.  Google Scholar

[15]

M. T. Kajani and F. T. Kajani, Homotopy analysis method for solving nonlinear system of equations, 13 (2011), 2471–2473. Google Scholar

[16]

N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos Solitons Fract., 24 (2005), 1217-1231.  doi: 10.1016/j.chaos.2004.09.109.  Google Scholar

[17]

N. A. Kudryashov, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342 (2005), 99-106.  doi: 10.1016/j.physleta.2005.05.025.  Google Scholar

[18]

N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2248-2253.  doi: 10.1016/j.cnsns.2011.10.016.  Google Scholar

[19]

N. A. Kudryashov, Analitical Theory of Nonlinear Differential Equations, Institute of Computer Investigations, Moskow-Igevsk, 2004. Google Scholar

[20]

N. A. Kudryashov, On ``new travelling wave solutions" of the KdV and the KdV-Burgers equations, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009), 1891-1900.  doi: 10.1016/j.cnsns.2008.09.020.  Google Scholar

[21]

J. Liu and Y. Zhang, Construction of lump soliton and mixed lump stripe solutions of $(3+1)$-dimensional soliton equation, Results in Physics, 10 (2018), 94-98.   Google Scholar

[22]

S. K. LiuZ. T. Fu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions on nonlinear wave equations, Phys. Lett. A., 289 (2001), 69-74.  doi: 10.1016/S0375-9601(01)00580-1.  Google Scholar

[23]

W.-X. Ma and J.-M. Lee, A transformed rational function method and exact solutions to the $(3+1)$-dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42 (2009), 1356-1363.  doi: 10.1016/j.chaos.2009.03.043.  Google Scholar

[24]

F. Mahomed, Recent trends in symmetry analysis of differential equations, Not. S. Afr. Math. Soc., 33 (2002), 11-40.  doi: 10.1198/106186002317375721.  Google Scholar

[25]

W. Malfiet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650-654.  doi: 10.1119/1.17120.  Google Scholar

[26]

P. J. Olver, Applications of Lie Groups to Differential Equations, Second edition, Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1993.  Google Scholar

[27]

L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, Inc., New York-London, 1982.  Google Scholar

[28]

M. Saifur Rahman and A. S. M. Z. Hasan, Modified harmonic balance method for the solution of nonlinear jerk equations, Results in Physics, 8 (2018), 893-897.  doi: 10.1016/j.rinp.2018.01.030.  Google Scholar

[29]

I. Simbanefayi and C. M. Khalique, Travelling wave solutions and conservation laws for the Korteweg-de Vries-Bejamin-Bona-Mahony equation, Results in Physics, 8 (2018), 57-63.   Google Scholar

[30]

H.-Q. Sun and A. H. Chen, Lump and limp-kink solutions of the $(3+1)$-dimensional Jimbo-Miwa and extended Jimbo-Miwa equations, Appl. Math. Lett., 68 (2017), 55-61.  doi: 10.1016/j.aml.2016.12.008.  Google Scholar

[31]

C.-Y. Wang, The analytic solutions of Schrödinger equation with Cubic-Quintic nonlinearities, Results in Physics, 10 (2018), 150-154.  doi: 10.1016/j.rinp.2018.05.017.  Google Scholar

[32]

M. L. WangX. Z. Li and J. L. Zhang, The $(G'/G)-$expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A., 372 (2008), 417-423.  doi: 10.1016/j.physleta.2007.07.051.  Google Scholar

[33]

A.-M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Appl. Math. and Comput., 188 (2007), 1467-1475.  doi: 10.1016/j.amc.2006.11.013.  Google Scholar

[34]

A.-M. Wazwaz, Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Appl. Math. Comput., 203 (2008), 592-597.  doi: 10.1016/j.amc.2008.05.004.  Google Scholar

[35]

A.-M. Wazwaz, Multiple-soliton solutions for the extended $(3+1)$-dimensional Jimbo-Miwa equation, Appl. Math. Lett., 64 (2017), 21-26.  doi: 10.1016/j.aml.2016.08.005.  Google Scholar

[36]

G. Q. Xu, The soliton solutions, dromions of the Kadomtsev-Petviashvili and Jimbo-Miwa equations in $(3+1)$-dimensionals, Chaos Solitons Fractals, 30 (2006), 71-76.  doi: 10.1016/j.chaos.2005.08.089.  Google Scholar

[37]

L. J. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order odes and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 759-772.  doi: 10.3934/dcdss.2018048.  Google Scholar

[38]

Y. B. ZhouM. L. Wang and Y. M. Wang, Periodic wave solutions to coupled KdV equations with variable coefficients, Phys. Lett. A, 308 (2003), 31-36.  doi: 10.1016/S0375-9601(02)01775-9.  Google Scholar

[1]

Hartmut Pecher. Infinite energy solutions for the (3+1)-dimensional Yang-Mills equation in Lorenz gauge. Communications on Pure & Applied Analysis, 2019, 18 (2) : 663-688. doi: 10.3934/cpaa.2019033

[2]

María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020222

[3]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[4]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[5]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[6]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

[7]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[8]

Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615

[9]

Yufeng Zhang, Wen-Xiu Ma, Jin-Yun Yang. A study on lump solutions to a (2+1)-dimensional completely generalized Hirota-Satsuma-Ito equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020167

[10]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[11]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[12]

Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control & Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401

[13]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[14]

M. S. Bruzón, M. L. Gandarias, J. C. Camacho. Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation. Conference Publications, 2015, 2015 (special) : 151-158. doi: 10.3934/proc.2015.0151

[15]

Jae Man Park, Gang Uk Hwang, Boo Geum Jung. Design and analysis of an adaptive guard channel based CAC scheme in a 3G-WLAN integrated network. Journal of Industrial & Management Optimization, 2010, 6 (3) : 621-639. doi: 10.3934/jimo.2010.6.621

[16]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[17]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[18]

Tatsuaki Kimura, Hiroyuki Masuyama, Yutaka Takahashi. Light-tailed asymptotics of GI/G/1-type Markov chains. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2093-2146. doi: 10.3934/jimo.2017033

[19]

Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial & Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909

[20]

Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609

2018 Impact Factor: 0.545

Article outline

[Back to Top]